ecancermedicalscience

Review

Machine learning in oncology: a review

30 Jun 2020
Cecilia Nardini

Machine learning is a set of techniques that promise to greatly enhance our data-processing capability. In the field of oncology, ML presents itself with a wealth of possible applications to the research and the clinical context, such as automated diagnosis and precise treatment modulation. In this paper, we will review the principal applications of ML techniques in oncology and explore in detail how they work. This will allow us to discuss the issues and challenges that ML faces in this field, and ultimately gain a greater understanding of ML techniques and how they can improve oncological research and practice.

Related Articles

Ally H Mwanga, Jeanine Justiniano, Eric M Mbuguje, Balowa Musa, Deogratius B Mwanakulya, Andrew Swallow, Edith Kimambo, Eva Uiso, Swaleh Pazi, Latifa Rajab, Nashivai E Kivuyo, Larry Akoko, Azza Naif, Advera Ngaiza, Sara Nyagabona, Jerry Ndumbalo, Amos R Mwakigonja, Jim E Littlejohn, Seif Wibonela, Cameron E Gaskill
Clara Pierini, Clara Mariano y Jelicich, Fabiola Bascuñán Acuña, María De San Martín, Aldana Casati, Cecilia Casullo, Marta Díaz Madero, Delfina Grennon Viel, Estefania Marzik, Gabriela Rodriguez, Victoria Viel Temperley
Ochomo Edwin Onyango, Philiph Tonui, Peter Itsura, Elkanah Omenge Orang'o, Kapten Muthoka, Sayo Loice, Benard Ochieng Samba, Barry Rosen, Patrick Loehrer, Susan Cu-Uvin
Annesha Chakraborti, Badira Cheriyalinkal Parambil, Venkata Rama Mohan Gollamudi, Maya Prasad, Siddhartha Laskar, Nehal Khanna, Jifmi Jose Manjali, Sajid Qureshi, Mukta Ramadwar, Poonam Panjwani, Akshay Baheti, Vasundhara Patil, Sneha Shah, Girish Chinnaswamy
Sandy Minck, Gerda Evans, Marie Lowe, Cindy Schultz-Ferguson, Catherine Woulfe, Kym Berchtenbreiter, Krysty Sullivan, Ann White, Lynette Moore, Susan Jarvis, Wendy V Ingman, Jennifer Stone