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Abstract

Metastatic castration-resistant prostate cancer (mCRPC) remains a formidable clinical 
challenge despite advancements in therapy. This narrative review explores the role of 
artificial intelligence (AI), machine learning and deep learning in addressing therapeutic 
resistance in mCRPC. AI-driven approaches leverage integrated datasets encompassing 
genomics, proteomics and clinical parameters to uncover molecular mechanisms, predict 
treatment responses and identify biomarkers of resistance. These methodologies promise 
personalised treatment strategies tailored to individual patient profiles. However, data 
heterogeneity and regulatory considerations are challenges that hinder the translation of 
AI insights into clinical practice. By synthesising current literature, this review examines 
the progress, potential and limitations of AI applications in combating therapeutic resis-
tance in mCRPC, highlighting implications for future research and clinical implementation.
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Background 

Castration-resistant prostate cancer (CRPC) is defined by the progression of prostate 
cancer, whether detected radiologically or biochemically, despite undergoing standard 
androgen deprivation therapy (ADT), where serum testosterone levels have decreased to 
castration levels (usually below 50 ng/dl or 1.7 nmol/l) [1]. Metastatic castration-resis-
tant prostate cancer (mCRPC) is an aggressive form of cancer, prevalent among men and 
is associated with elevated morbidity and mortality [2]. With millions affected globally, 
mCRPC presents a formidable clinical challenge due to its aggressive nature and ten-
dency to develop resistance to treatment. Despite advancements in oncological research 
and therapies, managing mCRPC remains difficult, as traditional approaches frequently 
fail to effectively halt disease progression or enhance patient outcomes [3]. 
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The emergence of resistance mechanisms against frontline therapies, such as ADT and oral hormonal agents like enzalutamide and abi-
raterone underscore the urgent need for innovative strategies to address therapeutic resistance in mCRPC [4, 5]. The need for more effective 
interventions to combat this disease has spurred a growing interest in harnessing the power of artificial intelligence (AI), machine learning 
(ML) and deep learning (DL) to decipher its underlying complexities and devise personalised treatment regimens tailored to individual patient 
profiles [6–8]. 

In recent years, the convergence of AI, ML and DL technologies has propelled significant breakthroughs across various domains of health-
care, offering unprecedented opportunities for precision medicine, early disease detection and treatment optimisation [9]. Within the realm 
of mCRPC, the application of computational methodologies holds immense promise in elucidating the intricate molecular pathways driving 
therapeutic resistance and identifying novel targets for intervention. By analysing vast datasets encompassing genomics, proteomics and 
clinical parameters, AI-driven approaches can elucidate the molecular basis of treatment or disease progression or aid in the discovery of 
predictive biomarkers of the disease [10, 11].

This comprehensive review endeavors to explore the current landscape of AI-driven solutions aimed at overcoming therapeutic resistance 
in mCRPC.

Overview of artificial intelligence, machine learning and deep learning 

In recent years, AI, ML and DL have garnered significant attention in oncology due to their potential to revolutionise research and clinical 
practice [12–14]. AI refers to the utilisation of a variety of techniques to enable computers to carry out simulated tasks requiring human 
intelligence [15].

ML, a subset of AI, involves the development of algorithms where computers learn the data and make predictions or decisions without 
explicit instructions [16, 17]. ML has been used in cancer research to analyse intricate data relationships and make predictions about can-
cer outcomes. Many studies have explored the utility of ML in cancer research and have highlighted its potential and limitations. Decision 
trees are a specific ML technique that has demonstrated broad applicability across various cancer types, significantly improving diagnostic 
accuracy [18–20]. These applications encompass various cancer types, including breast, gastric, thyroid, prostate and colorectal cancer. Addi-
tionally, other ML algorithms such as k-means, K-nearest neighbors [21], logistic regression [22], Naïve Bayes [23, 24], principal component 
analysis [25, 26], Random Forests [27, 28, 29] and eXtreme Gradient Boost [30] have also been employed in cancer research, contributing to 
improved diagnostic accuracy and prediction across various cancer types [31].

DL is a specialised form of ML where multilayered artificial neural networks are employed to extract complex features from vast datasets, 
enabling the creation of powerful models that are able to capture complicated patterns [32]. DL has emerged as a transformative technology 
in cancer research. It can learn intricate features from expansive datasets automatically, making it a powerful tool for analysing images and 
molecular profiling. Studies that have explored the application of DL have shown its remarkable potential in improving diagnosis, predicting 
disease progression and exploring new treatment options [33, 34]. Moreover, initiatives such as the introduction of expansive pathologi-
cal image datasets, such as SNOW for breast cancer research, have significantly improved computational pathology by providing abundant 
data for training robust DL models [35]. Furthermore, the development of DL-based methods for the automatic identification of circulating 
tumour cells and cancer-associated fibroblasts has shown superior performance compared to conventional computer vision methods [35]. 

The widespread success of AI, ML and DL in improving diagnostics and treatment strategies across various cancer types underscores their 
potential utility in addressing the complexities of mCRPC. Evidence from studies in breast, gastric and colorectal cancer highlights the sig-
nificant contributions of these technologies in enhancing diagnostic accuracy and predicting therapeutic responses. Utilising the capabilities 
of AI, ML and DL in mCRPC research and clinical practice could lead to personalised therapeutic interventions tailored to individual patient 
profiles, ultimately improving outcomes for those affected by this aggressive form of prostate cancer. Thus, the demonstrated efficacy of 
AI-driven approaches in other cancer types suggests a promising avenue for combating therapeutic resistance in mCRPC through interdisci-
plinary collaboration and innovative application of these methodologies.
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Pathogenesis of metastatic castration-resistant prostate cancer

Patients diagnosed with localised prostate cancer usually undergo radical prostatectomy and/or radiotherapy, followed by ADT [36, 37]. 
Based on the cancer grade, a varying percentage of these patients progress to CRPC by one decade [38, 39]. CRPC, previously known as 
‘hormone-refractory prostate cancer’ and ‘androgen-independent prostate cancer,’ still relies on hormone activity for androgen receptor (AR) 
activation, even though castration treatments like ADT were ineffective [40–42]. Consequently, the terms ‘hormone-refractory prostate 
cancer’ and ‘androgen-independent prostate cancer’ were replaced with ‘castration-resistant prostate cancer (CRPC)’ [43, 44].

It is widely recognised that patients with metastatic prostate cancer undergoing ADT tend to show disease progression after an average of 
18–36 months [45]. The stem cell model of the prostate highlights that hormone resistance can arise through multiple pathways [46]. 

The normal prostate is maintained by a small number of androgen-independent stem cells that continually replenish themselves and produce 
androgen-sensitive cells [47]. When testosterone levels are within the physiological range, these androgen-sensitive cells differentiate into 
glandular epithelial cells until the cell population reaches equilibrium, balancing proliferation and cell death to prevent excessive growth [47]. 
As a result, the typical prostate consists predominantly of androgen-dependent glandular cells, a smaller number of androgen-sensitive basal 
cells and a limited population of androgen-independent basal stem cells [47].

Although the precise mechanisms are not entirely clear, several factors likely contribute to androgen independence, including genetic insta-
bility due to alterations in microenvironmental, impaired detoxification, activation of oncogenes and increased levels of androgen receptors 
[47]. 

Mechanisms of therapeutic resistance in mCRPC

The therapeutic landscape in mCRPC is predominantly limited to taxane-based chemotherapies, with emerging secondary regimens such as 
cabazitaxel and AR-targeted therapies like abiraterone, enzalutamide and apalutamide [43, 48]. However, resistance to these therapies poses 
a significant challenge, driving ongoing research into new targets and drug development strategies for mCRPC.

Resistance mechanisms in mCRPC are intricate and diverse. Understanding these mechanisms is crucial for devising effective therapeutic 
strategies. A primary mechanism involves the overexpression of efflux proteins such as P-glycoprotein and multidrug resistance proteins, 
which expel the chemotherapy drugs from tumour cells, decreasing their effectiveness [43, 49].

The AR signalling pathway is involved in mCRPC progression, and resistance mechanisms against AR-targeted medications like abiraterone 
and enzalutamide are well-documented. Mutations in the ligand-binding domain (LBD) of AR can alter its conformation, causing receptor 
antagonists to act as agonists, thereby promoting resistance [49]. Up to 64% of mCRPC patients exhibit AR overexpression or amplifica-
tion, while AR ovlike AR-V7, lacking the LBD, remain constitutively active and contribute further to therapeutic resistance [50, 51]. AR 
overexpression could be due to overexpression of AR coregulators, increased stability of the receptor itself or gene amplification resulting 
in increased phosphorylation or acetylation of histones at AR enhancers [52, 53]. Additionally, glucocorticoid receptor (GR) upregulation has 
been implicated in enzalutamide resistance, as both AR and GR share a binding site on the chromosome, leading to the activation of AR-
specific genes [54, 55].

Another critical resistance mechanism involves tumour cells evading destruction by inhibiting apoptosis and repairing DNA damage, pro-
cesses regulated by non-coding RNAs that modulate gene expression [56] Epigenetic changes also play a key role in mCRPC, such as cova-
lent modifications of histone proteins, which ultimately affect the normal processes associated with DNA, thereby playing a role in disease 
progression [57].

Neuroendocrine differentiation of tumour cells promotes lineage plasticity, whereby cells show increased adaptability to survival by adapt-
ing to their environment [58, 59]. This concept of plasticity has also been suggested as a possible mechanism of therapeutic resistance and 
disease progression [60].
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Activation of PI3K and AKT in mCRPC offers alternative survival pathways for the tumour cells, promoting cell growth and multiplication [61, 
62]. The prostate tumour microenvironment is another contributing factor, involving a complex interaction between tumour cells, stromal 
cells and various immune components [63]. This environment is highly immunosuppressive, driven by inflammatory signals and low oxygen 
levels, which create a protective barrier around cancer cells [63]. Immune-suppressive cells, such as regulatory T cells, M2 macrophages and 
myeloid-derived suppressor cells, dominate the microenvironment, impeding the anti-tumour activities of crucial immune cells like dendritic 
cells, natural killer cells, B cells and cytotoxic T cells [63]. This suppression ultimately leads to resistance against treatments.

Poly-ADP ribose polymerase (PARP) inhibitors may also be used in treating mCRPC, but resistance mechanisms including aberrations in 
genes of homologous recombination repair (HRR) such as BRCA1, BRCA2 and PALB2, pose significant challenges [64]. Efflux transporters 
like ABC transporters also reduce intracellular concentrations of PARP inhibitors, contributing to resistance [65].

Despite early success, resistance to 177 Lu-PSMA radioligand therapy in mCRPC arises from its low linear energy transfer, causing primarily 
single-strand DNA breaks. In addition, the effectiveness of this therapy depends on PSMA-mediated uptake of the radioligand; tumours with 
low or heterogeneous PSMA expression may not receive adequate radiation doses, leading to reduced therapeutic efficacy and prostate-
specific antigen (PSA) response [66]. 

These examples, summarised in Figure 1, underscore the complexity of resistance mechanisms in mCRPC, highlighting the need for innova-
tive approaches to overcome them. 

Current standard of care in the treatment of metastatic castration-resistant prostate cancer 

The National Comprehensive Cancer Network (NCCN) guidelines offer a multifaceted approach to managing mCRPC, advocating for the 
continuation of ADT alongside oral hormonal agents, chemotherapies such as docetaxel and oral targeted agents including abiraterone and 
enzalutamide, which are preferred choices if not previously administered [67].

Clinical decision-making in mCRPC hinges on various factors including prior treatments, patient preferences, symptomatology, adverse 
effects and the presence of visceral disease [67]. Regular monitoring via radiographic imaging (e.g., Computerised Tomography (CT) scans, 
bone imaging, prostate-specific membrane antigen positron emission tomography (PSMA PET) scans), clinical examinations and laboratory 
tests (e.g., PSA) are essential [67]. Therapy is typically continued until disease progression or intolerable side effects develop, as per NCCN 
guidelines [67].

Figure 1. Various methods of therapeutic resistance in metastatic castration-resistant prostate cancer.
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Numerous novel therapies have been tested in clinical trials, summarised in Table 1, offering potential avenues for mCRPC treatment. 
Despite their demonstrated efficacy, overall survival rates remain low, highlighting the ongoing necessity for extensive clinical trials to estab-
lish definitive outcomes and for the developing new drugs and therapies to combat this problem. 

Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

Trial Study type Patient 
population

Intervention Primary outcomes Secondary outcomes References

COU-AA-301 
trial

Double-blind, 
placebo-
controlled 
phase 3 trial

mCRPC (n = 
1195)

Abiraterone acetate 
plus prednisone  
(n = 797) versus 
placebo plus 
prednisone  
(n = 398)

Longer median 
overall survival 
in abiraterone-
prednisone group 
compared to 
placebo-prednisone 
group (14.8 versus 
10.9 months; Hazard 
Ratio (HR) = 0.65;  
p  < 0.001)

Longer time to PSA progression 
in abiraterone-prednisone group 
compared to placebo-prednisone 
group (10.2 versus 6.6 months;  
p < 0.001) 

Longer progression-free survival 
in abiraterone-prednisone group 
compared to placebo-prednisone 
group (5.6 versus 3.6 months;  
p < 0.001)

Improved PSA response rate in 
abiraterone-prednisone group 
compared to placebo-prednisone 
group (29% versus 6%; p < 0.001)

[68]

COU-AA-302 
trial

Double-blind, 
placebo-
controlled 
phase 3 trial

mCRPC  
(n = 1,088)

Abiraterone acetate 
plus prednisone  
(n = 546) versus 
placebo plus 
prednisone (n = 542)

Longer median 
radiographic 
progression-
free survival in 
abiraterone-
prednisone group 
compared to 
placebo-prednisone 
group (16.5 versus 
8.3 months; HR = 
0.53, p < 0.001)

25% decrease in 
the risk of death in 
the abiraterone–
prednisone group 
(HR = 0.75; p = 0.01)

Decreased risk of decline (by ≥1 point) 
in ECOG performance-status score by 
18% in abiraterone–prednisone group 
(HR = 0.82; p = 0.05)

Longer median time to the initiation 
of cytotoxic chemotherapy in 
abiraterone–prednisone group 
compared to placebo-prednisone 
group (25.2 versus 16.8 months; HR = 
0.58; p < 0.001)

Delay in the time to opiate use for 
cancer-related pain in abiraterone-
prednisone group (HR = 0.69; p < 
0.001)

51% reduction in risk of median time 
to PSA progression in abiraterone-
prednisone group (HR = 0.49; p < 
0.001)

[69]

(Continued)
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Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

STAAR Randomized, 
open-label 
phase 2 trial

mCRPC (n = 53) AAFP plus 
methylprednisolone 
(n = 24) versus OAA 
plus prednisone (n 
= 29)

AAFP 500 mg daily 
is therapeutically 
equivalent to OAA 
1,000 mg daily 
based on rounded-
up average days 9 
and 10 testosterone 
levels. (1.05 ng/dl 
[0.04], AAFP; 1.02 
ng/dl [0.03], OAA; 
p = 0.4703 for LS 
mean difference)

A PSA-50 response was observed 
in>65% of patients in both groups on 
days 28, 56, and 84 (p = NS)

The averaged absolute testosterone 
levels ≤0.1 ng/dl were achieved in 
25% of AAFP-treated patients and 
17% of OAA-treated patients (p = NS)

Adverse events were experienced by 
fewer AAFP-treated patients versus 
OAA-treated patients (18 (75.0%) 
versus 24 (82.8%))

[70]

AFFIRM trial Double-blind, 
placebo-
controlled 
phase 3 trial

CRPC (n = 1199) Enzalutamide (n = 
800) versus Placebo 
(n = 399)

Improved median 
overall survival 
in enzalutamide 
group compared to 
placebo group (18.4 
versus 13.6 months; 
HR = 0.63; p < 
0.001)

Reduction in:
Prostate-specific antigen (PSA) level 
(54% versus 2%, p < 0.001),

Soft-tissue response rate (29% versus 
4%, p < 0.001),

Quality-of-life response rate (43% 
versus 18%, p < 0.001),

Time to PSA progression (8.3 versus 
3.0 months; HR = 0.25; p < 0.001),

Radiographic progression-free survival 
(8.3 versus 2.9 months; HR = 0.40; p 
< 0.001),

Time to first skeletal-related event 
(16.7 versus 13.3 months; HR = 0.69; 
p < 0.001)

[71]

PREVAIL study Double-blind, 
placebo-
controlled 
phase 3 trial

Chemotherapy-
naïve metastatic 
prostate cancer (n 
= 1,717)

Enzalutamide (n = 
872) versus Placebo 
(n = 845)

Reduction in rate 
of radiographic 
progression-
free survival at 
12 months in 
enzalutamide group 
versus placebo 
group (65% versus 
14%) (81% risk 
reduction; HR = 
0.19; p < 0.001)

29% reduction in 
the risk of death in 
enzalutamide group 
versus placebo 
group (HR = 0.71; p 
< 0.001)

Enzalutamide group showed an 
improvement in: 
Time until initiation of cytotoxic 
chemotherapy (HR = 0.35; p < 0.001),

Time until first skeletal-related event 
(HR = 0.72; p < 0.001),

Complete or partial soft-tissue 
response (59% versus 5%; p < 0.001),

Time until prostate-specific antigen 
(PSA) progression (HR = 0.17; p < 
0.001)

Rate of decline in PSA (78% versus 
3%; p < 0.001)

[72]

(Continued)
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Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

STRIVE trial Double-blind, 
placebo-
controlled 
phase 2 trial

Non-metastatic 
or metastatic 
CRPC (n = 396)

Enzalutamide (n 
= 198) versus 
Bicalutamide (n = 
198)

Improved median 
progression-free 
survival with 
enzalutamide 
compared to 
bicalutamide (19.4 
versus 5.7 months) 
and reduced risk of 
progression or death 
by 76% (HR = 0.24; 
p < 0.001)

Intervention superior in: Time to PSA 
progression (HR = 0.19; p < 0.001),

Proportion of patients with a ≥ 50% 
PSA response (81% versus 31%; p < 
0.001)

Radiographic progression-free survival 
in metastatic patients (HR = 0.32; p < 
0.001)

[73]

TERRAIN trial Double-blind, 
placebo-
controlled 
phase 2 trial

mCRPC (n = 375) Enzalutamide (n 
= 184) versus 
Bicalutamide (n = 
191)

Improved median 
progression-free 
survival with 
enzalutamide 
compared to 
bicalutamide (15.7 
versus 5.8 months; 
HR = 0·44; p < 
0·0001)

Longer median time to a PSA 
progression event in enzalutamide 
group versus bicalutamide group (19.4 
versus 5.8 months; HR = 0·28; p < 
0.0001)

[74]

TAX 327 study Randomized, 
nonblinded 
phase 3 trial

Metastatic 
hormone-
refractory 
prostate cancer (n 
= 1006)

Mitoxantrone 
plus prednisone 
every 3 weeks 
(MP) (n = 337) 
versus docetaxel 
administered 
every 3 weeks 
plus prednisone 
(D3P) (n = 335) 
versus docetaxel 
administered weekly 
plus prednisone 
(D1P) (n = 334)

Longest median 
survival in D3P 
group (19.2 months 
in D3P group versus 
17.8 in D1P group 
versus 16.3 in MP 
group) (HR = 0.79; p 
< 0.004)

More patients 
survived ≥ 3 years 
in the D3P and D1P 
arms (18.6% and 
16.6%, respectively) 
compared with the 
MP arm (13.5%)

D3P showed a similar benefit 
compared to MP in patients with lower 
and higher baseline PSA levels (HRs 
= 0.83 and 0.73, respectively), with a 
median baseline PSA of 115 ng/ml.

D3P had a greater benefit than MP for 
patients with visceral metastases, (HR 
= 0.87)

D3P showed similar benefits 
compared to MP for patients with KPS 
≥ 90% and KPS 80%, (HRs = 0.75 and 
0.82, respectively)

D3P was more effective than MP for 
patients without substantial pain (HR 
= 0.73) and with substantial pain (HR 
= 0.85)

D3P showed greater benefit than MP 
for patients with worse QOL (HR = 
0.66) and a moderate benefit for those 
with better QOL (HR = 0.92)

[75]

(Continued)

http://www.ecancer.org
https://doi.org/10.3332/ecancer.2025.1953
https://pubmed.ncbi.nlm.nih.gov/26811535/
https://pubmed.ncbi.nlm.nih.gov/26774508/
https://pubmed.ncbi.nlm.nih.gov/18182665/


Re
vi

ew

ecancer 2025, 19:1953; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2025.1953 8

Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

TROPIC trial Randomized 
open-label 
phase 3 study

mCRPC (n = 775) Mitoxantrone plus 
prednisone (n = 377) 
versus Cabazitaxel 
plus prednisone (n 
= 378)

Improved 
median survival 
in cabazitaxel 
group compared 
to mitoxantrone 
group (15.1 versus 
12.7 months; 30% 
reduction in relative 
risk of death (HR = 
0·70; p < 0·0001)

Improved median progression-free 
survival with Cabazitaxel compared to 
mitoxantrone (2.8 versus 1.4 months; 
HR = 0·74; p < 0·0001)

Cabazitaxel group had a higher:
Tumor Response rate (14.4% versus 
4.4%; p = 0.0005)

PSA response rate (39.2% versus 
17.8%; p = 0.0002)

Median time to tumour progression 
(8.8 versus 5.4 months; HR = 0·61; p 
< 0·0001)

Median time to PSA progression (6.4 
versus 3.1 months; HR = 0·75; p = 0·001)

Median time to pain progression (HR = 
0·91; p = 0.52)

[76]

CARD study Randomized, 
open-label, 
clinical trial

mCRPC (n = 225) Cabazitaxel plus 
prednisone and 
GCSF (A) versus 
either abiraterone 
plus prednisone or 
enzalutamide (B)

Clinical benefit rate 
was greater for first-
line cabazitaxel than 
B (80% versus 62%; 
p = 0.039)

Overall survival was not different 
between groups A and B (median 37.0 
versus 15.5 months; HR = 0.58; p = 
0.073) nor was time to progression 
(median 5.3 versus 2.8 months; HR = 
0.87; p = 0.52)

[77]

PROSELICA 
study

Randomized 
open-label 
phase 3 study

mCRPC (n = 
1,200)

Cabazitaxel 20 mg/
m2 (C20, n = 598) 
versus Cabazitaxel 
25 mg/m2 (C25, n 
= 602)

Improved overall 
survival in C25 
group compared 
to C20 group (14.5 
versus 13.4 months; 
HR = 1.024)

Median PFS similar in both groups (3.5 
versus 2.9 months; HR = 1.099)
PSA response rates significantly higher 
in the C25 arm (29.5% versus 42.9%; 
50% decline in PSA from baseline 
(nominal p < 0.001).
Median time to PSA progression was 
longer for C25 arm compared to C20 
arm (6.8 versus  5.7 months; HR for 
C20 v C25 = 1.195)

[78]

FIRSTANA 
study

Open-label 
phase III study

mCRPC (n = 
1168)

Cabazitaxel 20 mg/
m2 (C20) versus 
Cabazitaxel 25 mg/
m2 (C25) versus 
Docetaxel 75 mg/
m2 (D75), plus daily 
prednisone.

Similar median 
survival in all 
groups (24.5 versus 
25.2 versus 24.3 
months) (HR for C20 
versus D75 = 1.01; 
p = 0.997), and (HR 
for C25 versus D75 
= 0.97; p = 0.757)

Similar median progression-free 
survival in all groups (4.4 versus 5.1 
versus 5.3 months)

Radiographic tumor responses were 
higher for C25 (41.6%) versus D75 
(30.9%; nominal p = 0.037)

Tumor responses were higher for 
C25 arm (41.6%) compared with D75 
(30.9%; nominal p = 0.037)

[79]

(Continued)
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Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

Pain PFS was longer in D75 compared 
with C25 ((HR for C25 versus D75 = 
1.19; nominal p = 0.035), and (HR for 
C20 versus D75 = 1.19; nominal p = 
0.118)

Corn et al  [80] Randomized, 
open-label, 
phase 1–2 
study

Progressive 
mCRPC (n = 160 
in phase 2)

Cabazitaxel (n = 79) 
versus Cabazitaxel 
plus Carboplatin (n 
= 81)

A maximum 
tolerated dose 
of cabazitaxel of 
25 mg/m² and 
carboplatin of AUC 
4 was selected.

Improved median progression-free 
survival with combination compared 
to Cabazitaxel alone (7.3 versus 4.5 
months; HR =  0·69; p = 0·018)

[80]

D9902B trial Double-blind, 
placebo-
controlled, 
phase 3 trial

mCRPC (n = 512) Sipuleucel-T (n = 
341) versus Placebo 
(n = 171)

Improvement in 
median survival in 
the sipuleucel-T 
group compared 
to placebo (25.8 
versus 21.7 months; 
22% reduction in 
mortality risk; HR = 
0.77; p = 0.04)

Similar time to objective disease 
progression in sipuleucel-T group 
compared to placebo (3.7 versus 3.6 
months; HR = 0.95; p = 0.63)

PSA baseline reductions of at least 
50% on two visits at least 4 weeks 
apart observed in sipuleucel-T group 
(2.6%), as compared with placebo 
group (1.3%).

[81]

KEYNOTE-199 Open-label, 
phase 2 study

mCRPC treated 
with docetaxel 
and one or 
more targeted 
endocrine 
therapies (n = 
258). Cohort 
1: RECIST-
measurable 
PD-L1–positive 
(n = 133) versus 
Cohort 2: PD-L1–
negative (n = 66) 
versus Cohort 3: 
bone-predominant 
disease, regardless 
of PD-L1 
expression (n = 
59).

Pembrolizumab 
every 3 weeks for up 
to 35 cycles

Objective response 
rate in cohort 1 was 
5% as compared to 
1% in cohort 2

Median overall survival was 9.5 
months in cohort 1, 7.9 months in 
cohort 2, and 14.1 months in cohort 3

Disease control rate was 10% in 
cohort 1, 9% in cohort 2, and 22% in 
cohort 3.

[82]

Tannock et al 
[83]

Randomized 
trial

Symptomatic 
hormone-
resistant prostate 
cancer (n = 161)

Mitoxantrone plus 
prednisone versus 
prednisone alone

Improved palliative 
response in 
mitoxantrone 
group compared to 
placebo (29% versus 
12%; p = 0.01)

Response duration was longer for 
treatment with mitoxantrone plus 
prednisone than for prednisone alone 
(median 43 versus 18 weeks, p < 
0.0001)

[83]

(Continued)
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Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

Kantoff et al 
[84]

Randomized 
trial

Hormone-
refractory 
prostate cancer (n 
= 242)

Mitoxantrone plus 
hydrocortisone 
(M1H) versus 
hydrocortisone

No difference in 
survival between 
the treatment arms 
(median duration, 
12.6 months for 
hydrocortisone 
versus 12.3 months 
for M1H; p = 0.77)

Longer median time to treatment 
failure and disease progression 
after initiation with M1H versus 
hydrocortisone (3.7 versus 2.3 months; 
p = 0.0254 for treatment failure; p = 
0.0218 for disease progression)

[84]

PROfound 
study

Randomized, 
open-label, 
phase 3 trial

mCRPC who 
had disease 
progression 
while receiving 
a new hormonal 
agent (e.g., 
enzalutamide or 
abiraterone)
Cohort A: 
patients with 
BRCA1/2 or 
ATM mutations, 
Cohort B: 
patients with 
a mutation in 
at least one of 
12 other HRR 
genes (BARD1, 
BRIP1, CDK12, 
CHEK1, CHEK2, 
FANCL, PALB2, 
PPP2R2A, 
RAD51B, 
RAD51C, 
RAD51D, or 
RAD54L).

Olaparib versus 
physician’s choice 
of enzalutamide or 
abiraterone.

Longer imaging-
based progression-
free survival in the 
Olaparib group 
compared to the 
control group (7.4 
versus 3.6 months; 
HR = 0.34; p < 
0.001) in cohort A

Higher objective response rate among 
patients who could be evaluated in 
olaparib group (22%) compared to 
control group (4%) (OR = 5.93) in both 
cohorts

Longer median overall survival in 
olaparib group than in control group 
(17.5 versus 14.3 months; HR = 0.67) 
in both cohorts

PSA50 response confirmed in 30% 
in the olaparib group and 10% in the 
control group in both cohorts

[85]

TRITON2 trial Open-label, 
phase 2 study

mCRPC with 
a deleterious 
or suspected 
deleterious 
germline or 
somatic BRCA1 
or BRCA2 
mutation, and 
who had disease 
progression 
after previously 
receiving therapy 
with a novel 
hormonal agent 
plus one taxane 
chemotherapy.

Rucaparib versus 
control medication

Longer duration 
of imaging-based 
progression-free 
survival in the 
rucaparib group than 
in the control group, 
both in the BRCA 
subgroup (median, 
11.2 months 
versus 6.4 months, 
respectively; HR = 
0.50; p < 0.001) and 
in the intention-to-
treat group (median, 
10.2 months 
versus 6.4 months, 
respectively; HR = 
0.61; p < 0.001)

In the BRCA subgroup, the median 
overall survival was longer in the 
rucaparib group versus the control 
group (24.3 versus 20.8 months; HR = 
0.81; p = 0.21)

Frequency of a confirmed objective 
response in the rucaparib group and 
the control group was 45% and 17% 
respectively, in the BRCA subgroup; 
35% and 16% respectively, in the 
intention-to-treat population; and no 
response and 14% respectively, in the 
ATM subgroup

[86]

(Continued)
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Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

TRITON3 trial Open-label, 
controlled, 
randomized, 
phase 3 trial

mCRPC with 
a BRCA1, 
BRCA2, or ATM 
alteration and 
who had disease 
progression 
after treatment 
with a second-
generation 
androgen-
receptor pathway 
inhibitor (ARPI) (n 
= 485)

Rucaparib (n = 270) 
versus physician’s 
choice (docetaxel 
or a second-
generation ARPI 
[abiraterone acetate 
or enzalutamide] (n 
= 135)

In BRCA subgroup, 
longer imaging-
based progression-
free survival in the 
rucaparib group 
compared to the 
control group (11.2 
versus 6.4 months; 
HR = 0.50, p < 0.001)

Longer median 
imaging-based PFS 
in the intention-
to-treat population 
(10.2 months versus 
6.4 months; HR = 
0.61, p < 0.001)

Objective response rate in the BRCA 
subgroup and the ATM subgroup was 
45% versus 17% and 0% versus 14%, 
respectively.

The overall survival in the BRCA 
subgroup was 24.3 months versus 
20.8 months (HR = 0.81, p < 0.21)

50% PSA response rate was seen in 
55% of the patients with rucaparib as 
compared to 27% in the control group.

[87]

PROpel trial Double-blind, 
phase 3 trial

mCRPC (n = 796) Abiraterone plus 
Olaparib (n = 399) 
versus Abiraterone 
plus placebo (n = 
396)

Longer imaging-
based progression-
free survival in 
intervention group as 
compared to placebo 
group (24.8 versus 
16.6 months; HR = 
0.66; p < 0.001)

Immature overall survival data (28.6% 
maturity; HR = 0.86)

[88]

TALAPRO-2 
study

Randomized, 
double-blind, 
phase 3 trial

mCRPC receiving 
ongoing androgen 
deprivation 
therapy (n = 805)

Talazoparib plus 
Enzalutamide 
versus Placebo plus 
Enzalutamide

Median rPFS was 
not reached (95% 
CI 27·5 months-
not reached) for 
talazoparib plus 
enzalutamide 
and 21·9 months 
for placebo plus 
enzalutamide (HR = 
0.63; p < 0·0001)

Immature overall survival data [89]

MAGNITUDE 
trial

Phase 3, 
randomized, 
double-
blinded study

mCRPC  with 
HRR+ mutations 
(n = 423)

Niraparib + 
Abiraterone 
versus  Placebo + 
Abiraterone

Longer radiographic 
progression-free 
survival in HRR+ 
group with niraparib 
group as compared to 
placebo group (16.5 
versus 13.7 months; 
HR = 0.73; p = 0.022)

Longer radiographic 
progression-free 
survival in BRCA1/2 
group with niraparib 
as compared to 
placebo group (16.6 
versus 10.9 months; 
HR = 0.53; p = 0.001)

In the HRR+ cohort, niraparib 
COMBINATION delayed TCC (HR = 
0.59; p = 0.011) and TSP (HR = 0.69; 
p = 0.04), which was also observed in 
the BRCA1/2 subgroup

Niraparib combination prolonged time 
to PSA progression and led to higher 
ORR in the HRR+ and BRCA1/2 
groups (time to PSA progression and 
rPFS were strongly correlated, with an 
overall r = 0.67 (95% CI, 0.56–0.75))

[90]

(Continued)
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Table 1. Overview of novel therapies investigated in clinical trials for mCRPC. (Continued)

VISION trial Open-label, 
phase 3 trial

mCRPC patients 
previously 
treated with at 
least one ARPI 
and one or two 
taxane regimens 
and who had 
PSMA-positive 
gallium-68 (68Ga)–
labeled PSMA-11 
positron-emission 
tomographic–
computed 
tomographic 
scans

177Lu-PSMA-617 
plus protocol-
permitted standard 
care (n = 551) 
versus standard care 
alone (n = 280)

Longer imaging-
based progression-
free survival (8.7 
versus 3.4 months; 
60% improvement; 
HR = 0.40; p < 
0.001) and overall 
survival (15.3 versus 
11.3 months; 38% 
improvement; HR 
= 0.62; p < 0.001) 
in intervention 
group compared to 
placebo

Intervention superior in: Median OS 
(15.3 versus 11.3 months; HR = 0.62; 
p < 0.001),

Median time to HRQOL (14.3 versus 
2.9 months; HR = 0.45; p < 0.001);

Median time to pain worsening (1.0 
versus 0.5 months; HR = 0.65; p < 
0.001)

[91]

ALSYMPCA 
trial

Randomized, 
double-blind, 
placebo-
controlled 
study

Progressive 
mCRPC (n = 921)

Radium-223 (n = 
614) versus Placebo 
(n = 307)

Improved median 
overall survival 
in radium-223 
group compared to 
placebo (14.0 versus 
11.2 months; 30% 
reduction in the risk 
of death HR = 0.70; 
p = 0.002)

Intervention prolonged the: 
Time to the first symptomatic skeletal 
event (median, 15.6 months versus 9.8 
months; HR = 0.66; p < 0.001)

Time to an increase in the total 
alkaline phosphatase level (HR = 0.17; 
p < 0.001)

Time to an increase in the PSA level 
(HR = 0.77; p < 0.001)

[92]

HR = Hazard Ratio; AAFP = Abiraterone acetate fine particle; OAA = Originator abiraterone acetate; MP = Mitoxantrone-prednisone every 3 weeks MP; 
D3P = Docetaxel administered every 3 weeks; D1P = Docetaxel administered weekly plus prednisone; rPFS = radiographic progression free survival; C20 = 
Cabazitaxel 20 mg/m2; C25 Cabazitaxel 25 mg/m2; D75 = Docetaxel 75 mg/m2 

Applications of artificial intelligence, machine learning and deep learning in combating therapeutic 
resistance 

AI holds immense potential to transform the landscape of mCRPC treatment by revolutionising various aspects of patient care. Figure 2 illus-
trates the diverse applications of AI in targeting mCRPC. AI algorithms can analyse patient data, including genomic profiles, imaging results 
and treatment histories, to predict individual responses to various treatment modalities. By identifying individual patient characteristics, 
clinicians can create customised treatment plans that optimise therapeutic benefits while reducing adverse effects.

Table 2 summarises the current literature on AI applications in the diagnosis and treatment of prostate cancer.

Pathomics

While prostate biopsy and Gleason scoring have historically served as the cornerstone for diagnosing localised prostate cancer, they are typi-
cally performed early in the disease course and often precede the development of mCRPC by several years [93]. Although prostate biopsy is 
not routinely required for the diagnosis of mCRPC, it retains a critical role in select clinical scenarios, particularly for molecular profiling and 
therapeutic stratification. Biopsies of metastatic sites are increasingly employed to enable mutational analysis and immunohistochemistry, 
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identifying actionable genomic alterations such as BRCA1/2, ATM and MSI-H, which can guide personalised treatment decisions [94]. More-
over, tissue biopsy plays a role in ruling out neuroendocrine or small cell transformation, which warrants a distinct therapeutic approach 
[95]. Despite 58% of patients in one study being found to harbor theoretically actionable mutations, only a small subset received matched 
therapies, highlighting the disparity between molecular findings and clinical application [94]. Beyond traditional histopathology, AI has dem-
onstrated considerable promise in enhancing pathology workflows. In a meta-analysis by Morozov et al [93], AI-assisted histological assess-
ment across 8,000 prostate biopsies and 458 prostatectomy cases achieved diagnostic accuracies ranging from 83.7% to 98.3%. Similarly, 
the PANDA challenge led by Bulten et al [96], utilising over 10,000 digitised biopsies, showcased AI’s potential to improve the reproducibility 
and efficiency of Gleason grading. 

Jung et al [97] validated DeepDx® Prostate (DeepDx), an AI-based diagnostic tool, using 593 whole-slide images (130 normal, 463 adenocar-
cinomas) against Gleason scores and grade groups assessed by three expert uropathologists as the reference standard [97]. DeepDx dem-
onstrated comparable cancer detection accuracy to original pathology reports but showed higher concordance with reference grade groups 
and Gleason scores. In another study, Paige Prostate, a clinical-grade AI tool, was evaluated for its efficacy in aiding pathologists with identi-
fication, grading and quantifying prostate cancer in 105 prostate core needle biopsies (CNBs) [100]. Four pathologists initially diagnosed the 
CNBs independently, achieving a diagnostic accuracy of 95.0%.

While these advancements have primarily focused on localised disease, their integration into molecular pathology pipelines and applica-
tion to metastatic lesion evaluation remain promising avenues for optimising precision oncology in mCRPC. In addition, early detection of 
prostate cancer allows for timely intervention, significantly impacting mCRPC prognosis. Detecting prostate cancer early increases the likeli-
hood of successful localised treatment with surgery or radiation therapy, potentially preventing or delaying progression to advanced stages, 
including mCRPC. This timely intervention facilitates the early initiation of systemic therapies and enables more effective disease monitoring 
and management. Figure 3 summarises the benefits and potential challenges of incorporating AI into pathomics related to mCRPC diagnosis.

Figure 2. Different applications of artificial intelligence in the treatment of metastatic castration-resistant prostate cancer.
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Table 2. Current literature available on AI applications in diagnosis, grading and treatment of prostate cancer.

Study Study design Primary outcome Secondary outcome Results References

Pathomics 

Morozov et 
al [93]

Systematic 
review & 
meta-analysis

AI accuracy in differentiating 
between prostate cancer and 
benign hyperplasia

AI accuracy in determining 
Gleason grade and 
agreement among AI and 
pathologists

The sensitivity for diagnosing prostate 
cancer was over 90%, with a range 
of 87%–100%, while the specificity 
varied between 68% and 99%.

[93]

PANDA 
challenge 

Prospective Development of reproducible AI 
algorithms for Gleason grading 
using digitized prostate biopsies

Validation of AI 
algorithms' performance 
on independent cross-
continental cohorts

Agreements with expert 
uropathologists on United States and 
European validation sets: 0.862 (κ, 
95% CI, 0.840–0.884) and 0.868 (95% 
CI, 0.835–0.900).

[96]

DeepDx  Prospective 
Cohort

Performance validation of 
DeepDx for prostate cancer 
diagnosis and grading using an 
independent external dataset

Evaluation of DeepDx’s 
value to the general 
pathologist

DeepDx achieved high accuracy for 
prostate cancer detection similar to 
original pathology reports and higher 
concordance

[97]

Paige prostate Prospective 
Cohort

Diagnostic performance 
of pathologists diagnosing 
prostatic core needle biopsies 
unaided and with AI assistance

Not applicable Reduction in the number of atypical 
small acinar proliferation reports, 
immunohistochemistry studies, second 
opinions, and time required for reading 
and reporting slides

[98]

Radiomics

Wang et al [99] Prospective 
observational

Prediction of BM in prostate 
cancer using texture features 
from mp-MRI

Comparison of predictive 
performance with PSA level 
and Gleason Score

Texture features from T2-w and DCE 
T1-w MRI showed strong association 
with BM (p < 0.01)

[99]

Li et al [100] Prospective 
observational

Development of AI model 
using TRUS images to predict 
prostate cancer

Comparison of AI model 
diagnostic performance 
with radiologists and clinical 
models

Better diagnostic efficacy than senior 
radiologists (AUC: 0.667). Detected 
82.9% of prostate cancer cases versus 
55.8% by radiologists

[100]

Faiella et al [101] Systematic 
review

Evaluation of AI models for 
LNI detection and prediction in 
prostate cancer

Comparison of AI model 
performance with standard 
nomograms and imaging 
modalities

MRI-based AI models showed 
comparable LNI prediction accuracy to 
standard modalities

[101]

Genomics

Decipher, 
Prolaris, 
Oncotype Dx 
Study 

Systematic 
review

Evaluation of Decipher, 
Prolaris, and Oncotype Dx for 
prognostication in localized 
prostate cancer

Assessment of their impact 
on treatment decisions and 
patient outcomes

Decipher, Prolaris, Oncotype Dx 
demonstrated rigorous quality 
criteria and potential clinical utility in 
prognostication of localized prostate 
cancer providing additional prognostic 
information beyond clinicopathologic 
variables

[102]

Dadhania et al 
[103] 

Prospective 
cohort

Development of a DL algorithm 
to identify ERG rearrangement 
status in prostate cancer based 
on digitized slides

Not applicable All models showed similar ROC 
curves with AUC results ranging 
between 0.82 and 0.85. Sensitivity 
and specificity of the 20× model was 
75.0% and 83.1%, respectively

[103]

(Continued)
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Table 2. Current literature available on AI applications in diagnosis, grading and treatment of prostate cancer.

Mena et al [104] 
 

Prospective 
cohort

Development of a classifier 
to predict the occurrence of 
prostate cancer using gene 
expression data and providing 
understandable explanations to 
assist pathologists

Identification of relevant 
genes for prostate cancer 
screening

RF algorithm with majority class 
down sampling achieved an average 
sensitivity of 0.90, specificity of 0.8, 
and an AUC of 0.84. Relevant genes 
include DLX1, MYL9, FGFR, CAV2, 
and MYLK

[104]

Recurrence and biomarker

Huang et al  
[105]

Prospective 
cohort

Development of an AI-powered 
method for predicting 3-year 
biochemical recurrence of 
prostate cancer

Identification of a new 
potential prostate cancer 
biomarker, TMEM173, 
related to the STING 
pathway

The AI model achieved an AUC of 
0.78 for predicting 3-year biochemical 
recurrence, outperforming Gleason 
Grade Group (AUC = 0.62).

[105]

Lui et al [106] Systematic 
review

Accuracy of AI-based models 
in predicting biochemical 
recurrence (BCR) of prostate 
cancer post-prostatectomy

Comparison of AI models 
with traditional BCR 
prediction methods; Impact 
of radiological features on AI 
performance

AI demonstrated high accuracy, 
especially when incorporating 
radiological features, occasionally 
outperforming traditional prediction 
methods. However, due to limited 
high-quality studies and insufficient 
external validation, further research 
is needed to confirm the reliability 
and clinical applicability of AI-based 
techniques.

[106]

Eminaga et al 
[107]

Observational 
study

AI-based system for predicting 
recurrence and mortality in 
prostate cancer using histology 
images

Comparison of AI model 
with existing grading 
systems; Agreement among 
pathology experts

AI-based prediction system 
outperformed existing grading 
systems and demonstrated superiority 
in categorizing PCa into four distinct 
risk groups. High consensus was 
observed among pathology experts. AI 
may aid in informed clinical decision-
making for PCa patients.

[107]

Research and drug discovery

CancerOmicsNet Prospective 
observational

Development of 
CancerOmicsNet to predict the 
therapeutic effects of kinase 
inhibitors across various tumors 
using a graph neural network

NA CancerOmicsNet achieved an AUC of 
0.83 in predicting therapeutic effects, 
outperforming other approaches

[108]

AndroPred Prospective 
observational

Development of AI algorithms 
to predict AR inhibitors using a 
dataset of 2242 compounds

Validation of predictive 
models through 
experimental assays

The DL-based prediction model 
outperformed others with accuracies 
of 92.18% and 93.05% on the training 
and test datasets, respectively

[109]

Registry

CAPRI-3 Retrospective 
observational

Demonstrating the reliability 
and efficiency of AI-driven 
patient identification and 
data collection for metastatic 
prostate cancer registry

Not applicable Completeness and accuracy of 
automated data extraction were 
92.3% or higher, except for date fields 
and inaccessible data

[110]

AUC = Area under curve; ROC = receiver operating characteristic

 (Continued)
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Figure 3. Benefits and challenges of pathomics in the diagnosis of metastatic castration-resistant prostate cancer.

Radiomics

The field of radiomics, which involves developing computational systems to extract and analyse quantitative features from medical images, 
holds promise for timely metastasis detection in mCRPC.

Wang et al [99] investigated the utility of texture features taken from multiparametric magnetic resonance imaging (mp-MRI) to predict 
bone metastases in prostate cancer patients [99]. By analysing 976 features from T2-weighted (T2-w) and dynamic contrast-enhanced 
T1-weighted (DCE T1-w) MRI scans of 176 patients, they found that combining information from both MRI sequences showed improved 
prognostic performance compared to using either sequence alone. Another study by Li et al [100] focused on developing an AI model using 
transrectal ultrasonography (TRUS) images to predict prostate cancer, comparing its diagnostic performance to radiologists and a clinical 
model [100]. Using 1,696 2-dimensional TRUS images from 142 patients, they trained a ResNet50 network with three classification models: 
original image (Whole), biopsy needle tract (Needle) and combined image (Feature Pyramid Networks (FPN)). The FPN model outperformed 
others.

Faiella et al [101] examined the role of AI models in detecting and predicting lymph node involvement (LNI) in prostate cancer patients. They 
evaluated 16 studies, where AI models predicted LNI as accurately as traditional nomograms, while CT and PET-CT based models showed 
strong diagnostic and prognostic capabilities.

Radiomics' ability to analyse texture features from medical imaging offers early detection potential for BM in mCRPC, aiding in treatment 
planning and prognosis assessment. Its quantitative approach complements traditional imaging modalities, potentially enhancing sensitiv-
ity and specificity, thereby advancing precision medicine in mCRPC management. Figure 4 outlines anticipated challenges associated with 
radiomics in mCRPC and proposes strategies to overcome them.

Genomics

Decipher, Oncotype DX Genomic Prostate Score and Prolaris are commercially available genomic tests, powered by ML, that guide prostate 
cancer management [102]. Decipher analyses gene expression to predict disease recurrence post-treatment. Oncotype DX Genomic Pros-
tate Score assesses tumour aggressiveness to guide treatment decisions, especially post-surgery. Prolaris measures cell proliferation genes 
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to predict disease aggressiveness and guide treatment strategies. These classifiers enable personalised treatment plans, sparing low-risk 
patients from unnecessary interventions while identifying high-risk cases needing more aggressive therapy. By integrating genomic data 
with clinical parameters, they enhance precision medicine, improving patient outcomes and quality of life. Clinicians can utilise these tools to 
tailor treatments, reducing overtreatment and minimising side effects. Their adoption signifies a shift towards data-driven decision-making 
in oncology, optimising patient care by harnessing the power of ML and genomics. 

Dadhania et al [103] used digitised slides of hematoxylin and eosin staining and identified the rearrangement of TMPRSS2-ERG in prostate 
cancer using a DL algorithm. Image patches from slides from 392 cases were exported at various magnifications. A DL model based on 
MobileNetV2 architecture was trained separately for each magnification level. The area under the curve (AUC) of the receiver operating char-
acteristic (ROC) curves ranged between 0.82 and 0.85. The sensitivity of the models was 75.0% and the specificity was 83.1% (20 × model). 
Mena et al [104] developed an ML-based classifier using 47 genes selected for their differential expression in prostate cancer, gene ontology 
and supporting literature. This classifier was trained using data available from 550 samples obtained from 'The Cancer Genome Atlas' and 
subsequently validated on four diverse external datasets comprising a total of 463 samples. Strong statistical significance was shown for the 
most successful strategy, which combined the Random Forest method with majority class downsampling. Across all datasets, their approach 
consistently produced an average sensitivity of 0.90, specificity of 0.80 and AUC of 0.84.

Genomics offers a promising opportunity for personalised treatment strategies. By identifying specific gene mutations or rearrangements, 
the most ideal drug therapy can be suggested and its efficacy can be predicted beforehand. For instance, genomic profiling can reveal muta-
tions in DNA repair genes like BRCA1/2 or alterations in the AR signalling pathway, which can guide the use of targeted therapies such as 
PARP inhibitors for BRCA-mutated cancers or next-generation AR signalling inhibitors. Moreover, clinical trials can be enhanced by stratify-
ing the participants on genomic data. By focusing on genomic-driven drug development, newer and more effective therapies can emerge for 
mCRPC.

Figure 4. Challenges of incorporating radiomics in the treatment of metastatic castration-resistant prostate cancer and their solutions.
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Recurrence prediction

Huang et al [105] presented a novel AI-powered method for predicting an early recurrence of prostate cancer post-prostatectomy and iden-
tifying cancer driver regions. Using deep convolutional neural networks, the study developed an AI model trained on whole slide images and 
patient data. The model extracted both visual and microscopic morphological features to find predictive regions of early recurrence (regions 
of interest [ROIs]). The model demonstrated promising results, with AI-derived morphometric scores effectively ranking regions of ROIs and 
showing strong prognostic value for 3-year biochemical recurrence (AUC = 0.78), significantly outperforming the traditional Gleason Grade 
Group, which had an AUC of 0.62. 

Liu et al [106] in their systematic review evaluates the effectiveness of AI in predicting biochemical recurrence after prostate cancer surgery. 
AI algorithms, especially those using radiological features, demonstrated higher accuracy in predicting the recurrence compared to those 
based on pathological or clinicopathological data. In some cases, AI outperformed traditional prediction methods. However, the review also 
identified significant variability in AI performance due to differences in study designs, patient inclusion criteria and follow-up data.

Eminaga et al [107] developed an AI-based system to predict prostate cancer recurrence using histology images. Validated with multi-institu-
tional datasets of 2,647 patients over 10 years, the system demonstrated superior predictive accuracy compared to existing grading systems. 
It categorised prostate cancer into four distinct risk groups and showed high consensus among experts, suggesting that AI can enhance 
recurrence prediction and improve clinical decision-making for patients.

These studies underscore the potential of AI to accurately predict the recurrence of prostate cancer.

Biomarker discovery

In addition, Huang et al [105] identified a potential new prostate cancer biomarker, TMEM173, associated with the STING pathway, through 
focused biomarker analysis of high-scored ROIs. This research introduced an innovative approach to identifying prostate cancer patients at 
risk for early recurrence and discovering novel biomarkers, utilising AI to analyse morphologic features from whole slide image data.

Research and drug discovery

CancerOmicsNet is a novel system based on AI that predicts how well the multitargeted kinase inhibitors will work against various types of 
cancer using a deep graph learning model [108]. Gagare et al [109] utilised ML and DL algorithms to train predictive models using molecu-
lar features, achieving high accuracy on both training and test datasets. It is important to further validate these models using experimental 
assays to establish their full reliability and utility.

Nevertheless, AI algorithms can analyse large-scale biomedical data, including genomic data and clinical trial results, to identify potential 
biomarkers, therapeutic targets and novel drug candidates for prostate cancer. This accelerates the process of drug development, allowing 
more effective therapies. 

Registry management

Maintaining an efficient registry for metastatic prostate cancer is crucial for providing the latest data to clinicians. However, using electronic 
health records (EHRs) that are mainly present in the form of text, to manage patient data poses challenges. Recent advancements in AI tech-
nologies, such as named entity recognition and natural language processing (NLP) have enabled the acquisition of valuable information from 
large amounts of unstructured textual data (text mining) [110]. In the Netherlands, NLP-based text-mining software is widely used across 
hospitals to semiautomatically gather data from EHRs [110]. This registry enables clinicians and researchers to access updated data, analyse 
treatment trends, monitor disease progression and evaluate patient outcomes. Access to such data is critical for making informed treatment 
decisions, modifying strategies based on the latest outcomes and adapting to emerging trends in patient care.
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Ongoing trials incorporating artificial intelligence to develop robust algorithms in the management of 
prostate cancer

Currently, multiple trials are ongoing in oncology and AI (Table 3). By incorporating AI with diagnostic imaging, these trials hold immense 
potential for developing robust algorithms and models that can facilitate accurate and prompt diagnosis. Continuous follow-up of these trials 
can provide valuable insights into treatment responses and assist in predicting therapeutic outcomes based on AI's ability to analyse images. 
This integration of AI offers an opportunity to adjust therapeutic strategies, allowing for the most suitable treatment approach for the patient 
without compromising the quality of healthcare.

Table 3. Ongoing trials incorporating artificial intelligence to develop robust algorithms in the management of prostate cancer. 

Trial Patient population Intervention Objective References

Prospective validation 
of pathology-based 
artificial intelligence 
diagnostic model for 
lymph node metastasis 
in prostate cancer 

Patients with prostate cancer undergoing 
radical prostatectomy and pelvic lymph 
node dissection

AI-based diagnostic 
model analyzing the 
whole-slide images

Assess the diagnostic accuracy and 
clinical utility of a pre-existing AI 
system for prostate cancer lymph node 
metastasis detection

[111] 

AI based measurements 
of tumor burden in 
PSMA PET-CT 

Patients referred to a clinically indicated 
18F-PSMA-1007 PET-CT scan at Skåne 
University Hospital, Lund or Malmö, 
Sweden

AI-based detection 
and quantification of 
suspected tumour/
metastases in PSMA 
PET/CT scans

Evaluate how the total tumor burden 
(cm3) predicts overall survival

[112]

Imperial Prostate 
6 – Cancer Histology 
Artificial Intelligence 
Reliability Study. (IP6-
CHAIROS) 

Adults with a prostate (either cis-male 
gender or trans-female gender with no 
prior hormone use at all) undergoing 
prostate biopsy because of an elevated 
serum PSA or abnormal digital rectal 
exam, who have undergone a pre-biopsy 
mp-MRI and advised to undergo prostate 
biopsies

Biopsy & imaging To evaluate the diagnostic accuracy 
and health economic value of the 
Galen Prostate AI system for triaging 
pathology slides within the NHS 
context.

[113]

Artificial Intelligence and 
Radiologists at Prostate 
Cancer Detection 
in MRI: The PI-CAI 
Challenge 

Men suspected of harboring clinically 
significant prostate cancer (csPCa) 
with elevated PSA levels (≥ 3 ng/ml) or 
abnormal digital rectal exam findings. 
Patients must not have a history of 
prior prostate treatment or positive 
histopathology findings (ISUP ≥ 2)

Histopathology and 
MRI

Validate the diagnostic performance 
of AI algorithms and radiologists in 
detecting and diagnosing csPCa in 
MRI, comparing their efficacy and 
identifying the optimal AI model and 
the effects of imaging techniques 
and reader experience on diagnostic 
accuracy

[114]

Accelerated Body 
Diffusion-Weighted 
MRI Using Artificial 
Intelligence (CeleScan-R) 

Cancer patients aged 18 and older who 
have undergone one of the following 
MRI examinations: whole-body for 
multiple myeloma, metastatic prostate 
cancer, metastatic breast cancer; stacked 
abdomen/pelvis for liver metastases, 
pancreatic cancer, gynecological cancers, 
gastrointestinal cancers; multiparametric 
prostate exam for primary prostate 
cancers

Whole-body 
diffusion-weighted 
MRI (WBDWI) 
using quickDWI, an 
accelerated technique 
with DL denoising 
filters, reducing 
acquisition times by up 
to 50%

To evaluate the clinical quality of 
quickDWI images compared to 
conventional MRI, aiming to facilitate 
wider adoption, reduce costs, and 
improve patient experience

[115, 116]

http://www.ecancer.org
https://doi.org/10.3332/ecancer.2025.1953


Re
vi

ew

ecancer 2025, 19:1953; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2025.1953 20

Studies involving artificial intelligence to reduce therapeutic resistance in CRPC 

Several studies have explored the integration of AI to understand therapeutic resistance and the effects of various therapies on a cellular 
level in CRPC. For instance, Blatti et al [10] developed a tool called TraRe, which used RNA sequencing to determine the response of abi-
raterone in mCRPC in different transcriptional networks. TraRe pinpointed a specific transcriptional module linked to the immune response, 
enriched with rewired regulatory networks in abiraterone treatment responders versus non-responders. This module included key transcrip-
tion factors such as CEBPE, GATA1, KLF1 and MYB, known to influence granulocyte differentiation, erythroid development and various 
hematopoietic and immune pathways. Additionally, TAL1 and NFE2 emerged as pivotal factors in gene expression regulation. Furthermore, 
TraRe identified transcription factors like SREBF2, SMAD7, SOX8 and SNAI2 driving other rewired transcriptional modules potentially impli-
cated in cancer progression and resistance mechanisms. The analysis also highlighted the crucial role of three transcription factors (ELK3, 
MYB and MXD1) which functioned differently in patients who didn't respond well to treatment. These findings underscore the complexity of 
transcriptional rewiring in mCRPC and the potential utility of TraRe in formulating personalised treatment plans.

Xue et al [117] predicted dosages using an ML technique for mCRPC patients. The patients’ PET imaging data and clinical information were 
used in the ML model as inputs, while Hermes software was utilised to calculate the organ-level dosimetry. Using standard uptake values, 
the ML algorithms predicted the dosimetry at the organ level. This algorithm can potentially improve treatment for CRPC by personalising 
radiation plans to maximise tumour kill while minimising damage to healthy organs. Through the prediction of individual radiation tolerance, 
this method may enable more aggressive dosing without compromising safety thresholds.

AI models can also be used to predict treatment discontinuity due to adverse effects. An example of this would be the algorithm laid out 
by Deng et al [118] which integrated data from three cohorts from different clinical trials. Various ML models were tested, including linear 
regression, cox regression, logistic regression and nonlinear tree-based methods. Tree-based models performed better, with random forest 
(RF) showing the highest performance in two out of the three cohorts. This RF model was then trained to identify patterns that differenti-
ate patients who discontinue treatment from those who continue, with certain data features, such as laboratory test results and medical 
history, having more influence on the model’s predictions. This model could help personalise treatment plans for CRPC, potentially reducing 
unwanted side effects and improving adherence and tolerance to treatment.

AI also has the ability to identify genomic mutations in mCRPC, which can then be used to identify different targets for drug development. 
One such study was conducted by Lin et al [119] which explored the next-generation sequencing of circulating cell-free DNA and used ML 
algorithms to identify specific genomic alterations to distinguish patients with castration-resistant from those with castration-sensitive pros-
tate cancer (CSPC). This study revealed potential genomic alterations in patients with mCRPC, specifically in the PI3K, RTK, G1/S and MAPK 
signalling pathways, highlighting the need to potentially target these pathways for therapeutic purposes.

Challenges and limitations of successful implementation of artificial intelligence to combat therapeutic 
resistance in castration-resistant prostate cancer

The successful implementation of AI in healthcare, particularly in combating therapeutic resistance in CRPC, faces numerous challenges. 
Firstly, ML and DL algorithms rely on vast datasets, which often present problems since hospital data is considered confidential and not com-
monly shared between institutions [120, 121]. This challenge of data accessibility hinders the development of complex algorithms, especially 
because ML-based systems depend on continuous improvement through training with expanding datasets [122]. The large data required 
also necessitates the establishment of an AI-supporting platform that can hold large amounts of data for storage, processing and analysis 
[123]. This is critical to understanding and predicting therapeutic resistance patterns effectively. Unfortunately, establishing such platforms 
involves expensive hardware, software and skilled personnel, costs that are often too high for individual research teams to afford [123].

Heterogeneity in disease presentation and progression presents a special difficulty in the setting of prostate cancer, especially in mCRPC, 
which involves a variety of genetic subtypes (e.g., BRCA1/2-mutated, AR-V7 positive, neuroendocrine transformation). The generalisabil-
ity of the model may be hampered by this variability. For example, when applied to mCRPC populations, where therapeutic resistance 
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mechanisms differ dramatically from hormone-sensitive illness, AI models trained on localised prostate cancer datasets may perform poorly. 
Another limitation is data labeling and annotation complexity, especially in histopathology. While AI has demonstrated promise in tasks such 
as Gleason grading, training models to detect subtle features like neuroendocrine differentiation or intratumoural heterogeneity – hallmarks 
of advanced mCRPC – is far more complex, often requiring expert manual annotation and large sample diversity.

Another potential issue concerns patient consent and data privacy. A prominent example occurred in 2018 with the acquisition of DeepMind 
Health by Google. Their application, Streams, was created to manage patients with acute kidney injuries. However, the project faced criticism 
when it was revealed that the National Health Service (NHS) had shared sensitive data of more than 1 million patients with DeepMind serv-
ers without obtaining patient consent [124]. This underscores the critical issue of patient consent, as healthcare data can be easily breached 
given its sensitivity [125]. The emergence of AI adds to these complications, as individuals may inadvertently grant access to further data 
collection by mistaking AI systems for human interaction [126]. Thus, it is crucial for AI to play a safe and ethical role in healthcare by adher-
ing to medical ethics and laws. Additionally, specific regulations governing the development and implementation of such technologies are 
warranted [127]. In mCRPC, patient consent and privacy are paramount given the confidentiality of cancer data. 

AI algorithms are also not perfectly reliable, and uncorrected errors within AI systems can lead to negative outcomes that may have signifi-
cant impacts [128]. This is exemplified by an AI application built to assess the risk of post-pneumonia complications, which malfunctioned 
and incorrectly recommended discharging asthmatic patients, posing a potential health risk [129]. In prostate cancer, incorrect interpretation 
of imaging or biopsy data could result in misclassification of disease stage or resistance profile, leading to suboptimal treatment selection. 
This raises a pertinent problem regarding accountability: who is responsible for the mishap when the AI system makes an error? With a lack 
of guidelines on the ethical use of AI/ML/DL algorithms in healthcare, there is ambiguity in their use in hospitals, leading to reluctance to 
implement these technologies [130].

As described by Laranjo et al [131] current research in the field of diagnosis using ML techniques often lacks consistency in reporting and 
fails to address the practical needs of end-users [131]. The current focus rests primarily on assessing technical performance using historical 
data, neglecting the crucial ‘last mile’ of clinical evaluations through randomised trials that assess real-world clinical use of AI [132, 133]. This 
creates a problem with a lack of replication of trials, limiting the evidential data and potentiating the risk of methodological error [134]. The 
capacity to independently validate research findings is the cornerstone of rigorous scientific investigation, which is accomplished by replica-
tion studies that effectively replicate the original experiment under controlled settings [131]. While there are currently limited replication 
studies in health informatics [135], the problem extends further with the fact that some replication studies are unable to produce the same 
results as the original study, creating problems regarding the clinical implementation of AI programs [136].

Another problem regarding AI technologies is the lack of transparency, classically described as the ‘black box problem’ [137, 138, 139]. 
DL algorithms often fail to provide justifications for their predictions, presenting legal difficulties as the system cannot justify potentially 
erroneous recommendations [140]. Lack of transparency also fails to establish patients’ trust in the system, posing problems regarding the 
practical implementation of these systems in clinics [141]. This is especially problematic in prostate cancer, where treatment decisions hinge 
on nuanced variables such as androgen receptor splice variants, genomic alterations and immunohistochemical profiles. Without clear justi-
fications for AI outputs, clinicians may hesitate to trust these models, impeding clinical adoption. 

Data heterogeneity presents another problem. Clinical data might differ greatly in terms of quality and presentation. This is best exemplified 
by surgical notes that are often varied and heterogeneous [123]. These differences may make it difficult for AI models trained on certain data-
sets to generalise to new data sources. This is compounded in prostate cancer and CRPC by variations in reporting standards across biopsy 
pathology, MRI protocols and molecular testing platforms, making generalisation across centers difficult. This highlights the need to maintain 
datasets containing cleaned data with a maximal signal-to-noise ratio to ensure robustness and reliability for the widespread application of 
AI techniques [123].

Another significant reason for the reluctance to adopt AI is the belief that AI will replace the human workforce [121]. This is a flawed perspec-
tive in medicine as it is a dynamic field with unpredictable circumstances that often require intuition and innate abilities to deal with various 
situations [142]. AI should be regarded as a valuable tool to support and strengthen clinical judgment, not as a substitute, helping oncologists 
tailor personalised treatment plans for mCRPC effectively.
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While these problems exist universally, the implementation of AI technologies faces additional challenges in low- and middle-income coun-
tries (LMICs). In these regions, populations often lack access to basic healthcare due to financial constraints and poor infrastructure. With 
a significant proportion of the population residing in rural areas, the quality of healthcare provided is often mediocre to low. This is further 
augmented by the lack of well-developed roads for timely access to healthcare facilities. Additionally, these areas often lack access to inter-
net facilities. While there are pertinent solutions, such as building infrastructure and installing internet devices, the costs required to achieve 
this impose an immense economic burden. This highlights how LMICs are bound by limited resources and finances, creating problems in the 
adoption of AI systems in these areas.

Training professionals, improving healthcare access and devising innovative solutions to provide AI-based systems in LMICs is essential and 
requires multidisciplinary, dedicated efforts. Specifically, for mCRPC, training healthcare providers on AI tools and methods to combat thera-
peutic resistance can significantly enhance treatment efficacy and patient outcomes in these resource-constrained settings.

Conclusion

The review article sheds light on the emergence of AI algorithms in prostate cancer. The successful examples of AI systems in various dis-
ciplines demonstrate how these systems can revolutionise the field in terms of the speed and accuracy of diagnosis, potentially allowing 
prompt intervention to delay or prevent the development of mCRPC. While treatment options for mCRPC are limited, AI offers immense 
potential to discover novel agents and predict the therapeutic effects of drugs. AI can be leveraged not only by physicians in their routine 
clinical practice to decide the best possible therapeutic approach for the patient but also provides numerous opportunities to integrate 
genomic data for personalised treatment. With its potential to be utilised across multiple disciplines, AI holds a promising role in combating 
therapeutic resistance in mCRPC.
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