ecancermedicalscience

Review

Machine learning in oncology: a review

30 Jun 2020
Cecilia Nardini

Machine learning is a set of techniques that promise to greatly enhance our data-processing capability. In the field of oncology, ML presents itself with a wealth of possible applications to the research and the clinical context, such as automated diagnosis and precise treatment modulation. In this paper, we will review the principal applications of ML techniques in oncology and explore in detail how they work. This will allow us to discuss the issues and challenges that ML faces in this field, and ultimately gain a greater understanding of ML techniques and how they can improve oncological research and practice.

Artículos relacionados

Milagros Abad-Licham, Juan Astigueta, Caddie Laberiano Fernández, Himelda Chávez Torres, Grisnery Maquera Torres, Edwin Figueroa, Ricardo Bardales
G Luis Pendola, Roberto Elizalde, Pablo Sitic Vargas, José Caicedo Mallarino, Eduardo Gonzalez, José Parada, Mauricio Camus, Ricardo Schwartz, Enrique Bargalló, Ruffo Freitas, Mauricio Magalhaes Costa, Vilmar Marques de Oliveira, Paula Escobar, Miguel Oller, Luis Fernando Viaña, Antonio Jurado Bambino, Gustavo Sarria, Francisco Terrier, Roger Corrales, Valeria Sanabria, Juan Carlos Rodríguez Agostini, Gonzalo Vargas Chacón, Víctor Manuel Pérez, Verónica Avilés, José Galarreta, Guillermo Laviña, Jorge Pérez Fuentes, Lía Bueso de Castellanos, Bolívar Arboleda Osorio, Herbert Castillo, Claudia Figueroa
Daniela Speisky, Mariano Villarroel, Felix Vigovich, Alejandro Iotti, Teresa Adriana García, Luciana Bella Quero, Mariano Bregante, María Teresa García de Davila
Emilia Pardal de la Mano, Guillermo Martín-Sánchez, Rosa López López, M Angeles Fernández Galán, Sergio Trinidad Ríos, M José Morán Jiménez, J María García Ruiz de Morales, M Antonia Crespo Santos, Guillermo Martín Núñez