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Abstract

Machine learning is a set of techniques that promise to greatly enhance our data-process-
ing capability. In the field of oncology, ML presents itself with a wealth of possible appli-
cations to the research and the clinical context, such as automated diagnosis and precise 
treatment modulation. In this paper, we will review the principal applications of ML tech-
niques in oncology and explore in detail how they work. This will allow us to discuss the 
issues and challenges that ML faces in this field, and ultimately gain a greater understand-
ing of ML techniques and how they can improve oncological research and practice.
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Introduction

Over the course of the last two decades, we have witnessed a progressive spread of 
machine learning (ML) techniques and applications. From shopping recommendation 
software to sophisticated image and speech recognition systems, ML is present in our 
lives in a quietly intrusive manner. For the scientist and medical practitioner, the presence 
of ML techniques is felt also in the workplace: in the wealth of algorithms and ML-based 
tools that aid, and in some cases have come to supersede, the human practice in the 
biomedical sciences.

‘ML’ is an umbrella term for a set of computational techniques that permit computer sys-
tems to ‘learn’, i.e., to become progressively better over time at performing a given task. 
Its approach to learning is ‘brute-force’ in the sense that it is based upon a huge amount 
of data that the computer system runs through in a trial-and-error process in order to 
minimise the deviation of its prediction from an expected result.

The general developments in computing and digital technology that enabled the progress 
in ML techniques, at the same time also greatly enhanced the data-acquisition and data-
storage capabilities in several fields of scientific research, bringing about the so-called 
‘Big Data’ age. The unprecedented availability of data, in turn, allowed ML techniques 
to be successfully employed in these domains. From techniques that facilitate diagnosis 
by revealing complex patterns in screening data, to expert systems that make treatment 
decisions, ML is becoming increasingly pervasive in the medical practice and oncology is 
no exception to the trend.
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In this paper, we will review the principal applications of ML techniques in oncology, both in the clinical practice and in the drug research 
area. A detailed explanation of these applications, and of how they work, will allow us to discuss the issues and challenges that ML faces in 
this field with a heightened level of awareness, and ultimately gain a greater understanding of ML techniques and how they can improve 
oncological research and practice.

Different kinds of learning

As outlined in the introduction, ML is a set of techniques for training computational systems to perform certain knowledge-related tasks. 
The actual techniques may vary depending on the specific task to be learned, but a look at a specific case is useful in order to flesh out the 
general principle. To this aim, we will consider one of the best-known ML techniques, image recognition.

Suppose we want to train a computer system to recognise cars. In order to do this, the computer system is presented with some images and 
has to output a yes/no answer (contains a car or not). Clearly, at the beginning of this training the system has no way of distinguishing cars, 
so the first answers will be at random. However, at this point, it will be possible to feed the right answers back onto the computer system, 
which will use this knowledge to re-adjust its internal parameters in order to commit fewer mistakes the next time around. The ML algorithm 
is precisely the rule that the algorithm follows to update its internal parameters in the face of a discrepancy between its prediction and the 
actual result.

When this process is repeated a large enough number of times, eventually the computer system will ‘converge’, i.e., it will recognise correctly 
all the cars within the images that have been used to train it. However, what about cars in new images, ones that the system has never ‘seen’? 
If the training set is sufficiently large (and ‘large’ generally means tens or hundreds of thousands of annotated images), the system will have 
captured the defining features of a car and thus it will be able to recognise cars in images that it has never seen. The accuracy of the most 
sophisticated ML systems in this kind of image recognition tasks is very high, rivalling and possibly even surpassing human capacities.

Image recognition is an instance of a supervised learning task. This means that the system is trained using a set of labelled data, i.e., data where 
the feature to be learnt is known and the knowledge is passed on to the system via feedback during training—in the previous example, the 
images have an embedded reference to the information about whether they represent a car or not. Supervised learning is contrasted with 
unsupervised learning techniques, where the data used in the training are unlabelled. The system has to learn how to classify or structure the 
data without any prior knowledge of what the groups or structures may be, but simply by trying in an iterative manner different ways to orga-
nise the data and selecting the one that is most stable or that minimises discrepancy according to a chosen criterion. Unsupervised learning 
is generally not employed to do visual recognition but, in keeping with our example of a car recognition task, the analogy is as follows. In this 
case, we would submit to the computer system a vast set of unlabelled images and have the system classify them. If some images contain 
cars while others do not, over many repetitions the system will learn that classifying images with ‘car features’ together leads to a more suc-
cessful classification (i.e., one that is more likely to be repeated next time around) and, in this way, it will learn to identify ‘car features’ also 
in novel images.

ML algorithms used in oncology belong to both families, as we will shortly see. There is a further kind of ML task, so-called reinforcement 
learning tasks, where the system has to learn how to achieve a certain goal in a dynamic environment. In this case, there is no correct or best 
answer and the system learns from the feedback it receives from the environment. This latter family of techniques is for instance used to train 
systems to play games or drive cars, and at present it does not have an application in the biomedical context.

ML techniques can be further characterised in terms of the underlying model: every ML application is based on a model, which defines the 
mathematical structure of the intelligent system and the way it learns. Some models can be used only for a certain kind of task. For instance, 
the various clustering models (k-means clustering or Gaussian mixture) are used for unsupervised learning; some classification models (like 
Support Vector Machines) or regression models (e.g., decision trees) are used for supervised learning. Other kinds of models are more ver-
satile and can be adapted to tackle a wide array of problems both in the supervised and unsupervised learning field. An example is Artificial 
Neural Networks, a class of models inspired by the structure and functioning of biological brains of which deep learning network models 
provide a special case. 
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In the following section, we will review, by means of some representative examples, the application of these techniques to oncological 
practice both in the lab and in the clinics. This will allow us to enter the discussion of the merits and issues of these techniques with a clear 
picture in mind.

Applications to oncology

Supervised learning techniques, such as image recognition, are often employed in tumour diagnosis and grading or staging, since this kind of 
problem is equivalent to assigning imaging samples to known categories. For example, a ML system may learn how to recognise particular 
structures in mammograms that are associated with higher breast cancer risk [19] or perform Gleason scoring of prostate cancers [12] or 
classify skin cancers based on the visual appearance of lesions [7]. 

Another area of great interest is the prediction of disease progression or treatment effectiveness. In this case, the kind of structure or fea-
ture that the system is trained to recognise is more often an abstract quantity rather than a visual image: the result of genomic or molecular 
analyses, such as gene expression profiles, microarray analysis or PCR (see Kourou et al [16] for a critical review). An example is prognostic 
classification of B-cell lymphoma [17]: the algorithm learns to recognise features in the patient’s gene expression profile that allows classifi-
cation into one of two groups with very different prognosis (survival rates).

This is indeed an interesting application of ML. Molecular and genomic techniques have become increasingly crucial to the oncological prac-
tice, in that they can provide unique information on disease diagnosis, classification, progression and response to treatment; however, the 
results of these analyses are often difficult to interpret, even with the help of various human-friendly visualisation techniques (such as heat 
maps) that have been developed over the years. Computer systems do not have the same cognitive limitations as humans, and therefore they 
can be trained to recognise a characteristic profile or ‘fingerprint’ in this kind of data in the same manner as they can be trained to recognise 
features in visual images. (It is actually the other way around. Computers do not ‘see’ images in the human sense of the term: pictures and 
other visual records are processed by an image recognition algorithm in the form of digital records. Therefore, visual recognition for a com-
puter is really just a special case of pattern recognition in numeric data.) The advantage of employing ML tools for this kind of task is obvious; 
however, it should be noted that ML can bear an advantage also in the case of purely visual data, in that it can reduce error, bias and the 
interpersonal variability that go with this kind of tasks in the clinics [18].

Unsupervised learning algorithms typically find an application where large annotated datasets to be used for supervised learning are not 
available or when the features of interest are not known. In this case the ML system will be fed a large number of patient data (for instance 
microarrays, gene expression profiles or histopathological or imaging data) but, unlike with supervised learning techniques, the data will be 
unlabelled, so the emerging classification will be done on features that are not known in advance. For instance, Lynch et al [11] explore dif-
ferent clustering techniques on simple disease variables (such as age of the patient, tumour stage, tumour size etc.) to automatically classify 
patients into groups with different survival rates. This application is unsupervised because the researchers do not know in advance that a 
particular combination of, for instance, grade and number of primaries will be associated with a better prognosis: the resulting classification 
will emerge from the learning system’s analysis of the data.

The stratification of patients according to phenotypical characteristics of their tumour or other biological markers, in order to derive some 
subtyping or categorisation with prognostic or predictive value, is a crucial problem in so-called personalised or precision Oncology. The preci-
sion approach to Medicine consists in taking into account disease and personal variability to predict more accurately which treatment and 
prevention strategies will work for a particular disease in a specific group of people. In Oncology, it is now known that cancers that were once 
treated as a single disease (such as lung or breast cancer) are actually very different diseases when considered in light of their histopatho-
logical and molecular detail (e.g., small cell versus squamous cell carcinoma, or HER2-Positive versus triple negative breast cancer), and this 
difference reflects in prognosis and in the appropriate treatment choice. In this context unsupervised ML techniques, particularly clustering 
algorithms, can be used for in-depth and novel classification of disease and patients groups that may be difference-makers in drug response 
or predicted survival [1, 3]. Another area of application is the discovery of new drugs or biomarkers [8]: here unsupervised techniques can be 
useful for a first coarse-grained exploration of the space of possible candidates to help identify avenues for further investigation.

A more extreme example of the power of these techniques is the use of ML methods to extract knowledge and understanding from the 
impressive deluge of -omic data that are available today, such as stem from projects like the The Cancer Genome Atlas (e.g., Ciriello et al 
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[4]). It is in these kinds of challenges that unsupervised learning appears most attractive as a technology in that it appears to generate new 
knowledge from otherwise hard to interpret data; this capacity, however, comes with specific caveats and pitfalls that will be explored in the 
next section.

Machines that learn: some issues

The use of ML methods represents a novel approach in the clinical and research setting and as such it brings about some specific issues and 
problems. However, it is also true that many of the methodological caveats and concerns in the use of such techniques are by no means 
unique to them, but are common to all complex technologies used in biomedical practice. In this section, we will examine both families of 
issues. The ideas discussed in this section are not specific to the oncological context, unless otherwise specified, but are common to all appli-
cations of ML to biomedical disciplines.

A worry that often comes to the forefront when discussing ML is related to the fact that the algorithms performing ML recognition and deci-
sion tasks are often referred to as ‘expert systems’. This definition evokes a picture of the ML algorithm as an artificial agent with decision 
power over human lives and it fosters the idea that such systems have come to replace human judgement. However, even when employed 
in a diagnostic or treatment adjustment capacity, these algorithms always act only as a support tool for a decision taken by a human doctor 
and for which a human doctor will bear the ultimate responsibility. While it is possible to envisage that in the near future the human role in 
some of these tasks will be entirely superseded, this will most likely never happen pending a clarification of who will be held accountable for 
the expert system’s decisions and possible errors. The case of self-driving cars represents a good example: development of this technology 
has at present mostly stalled because there is no clear idea of how traffic regulation laws could fit self-driving systems.

While it is at present an exaggeration to worry about learning systems becoming a replacement for human specialists, it is, however, true 
that the mechanism producing the results in a ML algorithm often appears opaque. There is a fear that, since the human doctor will in most 
cases be unable to reconstruct the reasoning or the evidence supporting the digital system output, this output, upon which a diagnostic 
or treatment decision will be based, will appear as black-boxed piece of information that the doctor has to take as-is, or discard entirely. It 
is, however, possible to argue that, to an extent, this is already happening with many technological tools and techniques on which medical 
professionals have come to rely over the years, and the difference, if any, is one of degree more than of substance. For instance, today’s onco-
logical practice is supported by many technologies, such as biomarker assessment or genomic profiling, for which the connection with the 
oncological disease is rather obscure to the non-specialist. Confidence in these technologies has been built through results, such as proven 
successful predictions, and the same can be true of ML algorithms. In other words, the oncologist can rely on a tumour diagnosis provided by 
an algorithm if the algorithm has been proven to yield correct diagnoses in most cases with consistency, in the same way as they rely on the 
value of a certain biomarker to be a proxy for tumour remission or on the result of a genomic assay to be an indicator of the most appropriate 
treatment course.

Considering ML as a tool not dissimilar to the others helping the clinician in the lab or in the operating room is useful also to illuminate a 
second family of issues, more methodological in nature that arise specifically in connection with ML techniques. To better understand what 
they are it is useful to consider the two families of ML techniques—supervised and unsupervised—in turn.

In supervised learning, the algorithm is trained through exposure to a set of labelled inputs and it ‘learns’ how to associate some features in 
the input with a label. A couple of things can go wrong in building this kind of association: some of the training input might be mislabelled, 
more obviously; or, more subtly, the training set might be biased in some way and such bias may inadvertently be amplified by the trained 
system. For example, if a feature unrelated to the tumour presence is consistently present in imaging screens of tumours used to train a 
diagnostic system (for instance a ruler or grid in skin cancer images), the system will learn to consider said feature as a predictor of tumour 
presence even though the association is false.  This worry is of great relevance especially for visual recognition algorithms: due to the huge 
amount of data needed to train this kind of systems, and due to the fact that even moderately large annotated datasets of tumour imaging 
are hard to come by, often such systems are trained for the most part using some large general purpose image recognition dataset and then 
receive a more specialised training on a smaller task-specific labelled training set. It is clear that in this manner the possibility for the system 
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to learn spurious correlations is very high. A related but separate issue is the possibility that if, as it often happens, a certain demographic is 
disproportionately represented in the training set, the algorithm may perform poorly on other patient groups [14].

In unsupervised learning techniques, on the other hand, the input set on which the training happens is composed of unlabelled, unorganised 
data. In the unsupervised learning case, it is the algorithm’s task to identify a correlation or a structure in the input, without any previous label 
assignment by the human. In this case mislabelling or misattribution is not an issue. Instead, unsupervised techniques are subject to the same 
kind of issues as may be familiar to the user of classical statistical tools. Due to the nature of the technique, the most cogent among these is 
overfitting, or, excessive adherence to the training data. In unsupervised learning, the computer system learns by maximising its performance 
over some metrics upon the training set. Theoretically, it does so by extracting a meaningful, generalisable pattern that can then be applied 
to new observations. However, the same result of a good fit with the training set can be obtained simply by ‘memorising’ the training set, 
similar to how it is possible to cheat at a test if one knows the answers in advance. Clearly, in this case, the actual predictive power of the 
model on new data will be poor; however, this can be difficult to ascertain for real-world applications.

An important point to clarify, before moving on to the discussion, concerns the difference between ML and techniques of traditional statisti-
cal analysis. At first glance, some unsupervised ML techniques bear a strong resemblance with statistical techniques, to the point that they 
might appear simply as a high-power version of the same thing. For example, some forms of clustering analysis can be considered a more 
powerful version of principal components analysis. The point of the similitude (and the difference) between ML and statistics has been ana-
lysed at depth in a recent Nature Methods article [2] and the main difference is purported to be in the application of the two techniques: 
classical statistical methods are mainly used for inference, i.e., to detect relations among the data; ML methods are predominantly used for 
prediction, i.e., to guide decision in specific cases. This conclusion underscores the idea that the knowledge generated by traditional statisti-
cal models is more robust and closer to capturing ‘true’ physiopathological effects. This is relevant to the potential use of ML techniques in 
clinical trials and other regulatory settings, and it will be explored in the next section.

ML to the trial

As we have seen in the preceding sections, ML algorithms represent a promising tool in the clinics. They can tackle simple clinical questions 
with an ability similar, or superior, to human pathologists. Trained on thousands of tumour images, they embed years of clinical experience, 
comparable to the most seasoned expert. They can detect patterns and meaningful classifications in otherwise intractable genomic and 
molecular data. However, they also have limitations, and their successful application is not so straightforward.

At this point, in the discussion, it is possible to address an important methodological question: are ML techniques at their present state 
adequate to complement or replace existing tools in the clinical and regulatory context? (In this discussion, we will consider ML algorithms 
applications in the clinics or in the lab and not the more abstract knowledge-generating tasks such as the mapping of the Cancer Genome 
Atlas described previously. This latter question is less a methodological one and more of an epistemological one, having to do with the logic 
of induction and scientific discovery: see, for instance, López-Rubio and Ratti [10].)

In order to answer this question, it is helpful to consider the similar situation of Bayesian statistical methods for the analysis of clinical trial 
results [13]. Bayesian statistics has been presented as an alternative to classical analysis of trial results using p-values and confidence inter-
vals. Bayesian methods promise to have superior performance as compared to classical ones in specific tasks (such as interim analysis or 
multifactor analysis); however, when it comes to replacing the gold standard, better performance is only a part of the picture. The traditional 
methodology for trial result analysis has the trust of the medical community, that has learned how to interpret and use it; it is mature, with 
a proven track record of applications; and finally, it is accepted by regulatory bodies as a tool that warrants objectivity and accountability in 
the trial review process.

In order to be routinely accepted and used in hospitals, ML software for diagnosis and treatment has to attain a similar level of compliance 
along these three criteria: trust, or the acceptance and reliance on the technique by the medical professionals who will be using it; track 
record, or the level of adoption and maturity of the technology; and finally accountability, or the possibility to assign responsibility of the 
decisions taken by ML systems. Let us see each in turn.
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Firstly, concerning trust, we have seen that it can be built through successful applications of the technique; however, reliability and external 
validity of ML algorithms are often at issue in biomedical applications. Indeed, many review articles in the field denounce poor predictive 
performance as a common problem in the works they examine (see, for instance, Cruz [5] or Kourou et al [15]). We should not conclude 
that ML techniques are unreliable; there are several adjustments and methodological tools that can be employed to correct bias, reinforce 
external validity and enhance predictive power. What is true, however, is that ML applications to the biomedical field are still too young for 
taking them for granted. To make another comparison, techniques such as gene-expression analysis or microarray are at this point in time so 
standardised that, in evaluating their results, one would hardly question the procedure followed or the methods used. Not so for ML, where 
it is legitimate to worry about possible bias or overfitting in training of the model, and trust has to be established on a case-by-case basis.

The second criterion to be examined is the track record of ML applications. At present, ML is still at a stage of early development where dif-
ferent avenues of application are explored and the technique is put to use in different ways in order to identify successful use cases. We are 
still far from a situation where a ML solution becomes the standard, go-to method for a particular diagnostic or clinical task. However, as a 
novel technique matures and becomes more reliable, its intrinsic advantages will increase its adoption, and thus consolidate its status. For 
instance, there can be no doubt about the strength of ML algorithms in tasks such as visual diagnosis; it is likely that, in time, the presently 
experimental ML solutions for automated diagnosis will evolve into standard, commercial applications and the same could happen for any 
other of the applications we have seen in this review.

This brings into consideration the last criterion on our list: accountability. The inevitable errors of a digital system for automated diagnosis 
or for automated therapy choice will have grave consequences for which it must be possible to adjudicate responsibility (for a discussion of 
the ethical aspects of this scenario see Grote and Berents [9]). In the beginning of the previous Section, we observed that for this reason it is 
likely that the diagnostic or treatment decision will still ultimately be taken by the human doctor. If so, what may be the consequences when 
the recommendation given by the algorithm turns out to be erroneous or if it contradicts the clinician’s own opinion?

On one hand, we should consider that the outcome of the ML algorithm comes with a certain confidence and a certain possibility of error. In 
this it is similar to other diagnostic or therapeutic aids, such as various kinds of laboratory analysis. What is different, though, is that the true 
accuracy of ML algorithms may be difficult to determine. Clinicians may be opposed to taking responsibility for an indication that opposes 
their own, also considering that the evidence and reasoning behind the ML result will mostly remain inaccessible. It seems that what is 
required is a model where liability is shared, like the situation where a laboratory may be held legally responsible in the case of erroneous test 
results [6]. In the case of a ML algorithm, their share of responsibility may be assigned to the software house who built them; however, this 
liability is likely to discourage many firms from investing in this endeavour. In conclusion the problem of accountability may be the hardest to 
address, and therefore it may be the most relevant factor in delaying the widespread adoption of ML techniques in such contexts.

Conclusion

ML is a set of techniques that promise to greatly enhance our data-processing capability. In the field of oncology, ML presents itself with a 
wealth of possible applications to the research and the clinical context, with examples spanning from diagnosis to prognosis to treatment 
modulation.

When considering such applications, it is important to maintain a balanced perspective: ML can provide new and powerful tools to address 
the hard problems that researchers and clinicians are daily confronted with in this field; however, ML has the potential to be error-prone or 
vulnerable to built-in bias in the same manner as other tools in medical research and practice.

As a consequence, it is necessary to avoid premature over-reliance on ML algorithms: trust in this technology has to be built one step at a 
time, based on its capability to make useful and correct predictions. The introduction of ML techniques to the clinical routine has to follow 
the right pace in order to enhance a widespread adoption of ML and make it possible to reap its benefits for patients and for the advance-
ment of oncological practice.
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