Possible mechanisms of action of clarithromycin and its clinical application as a repurposing drug for treating multiple myeloma

18 Aug 2020
Nobuo Takemori, Hong-Kean Ooi, Goro Imai, Kazuo Hoshino, Masanao Saio

Clarithromycin (CAM), a semisynthetic macrolide antibiotic, is a widely used antibacterial drug. Recently, the efficacy of CAM as an add-on drug for treating multiple myeloma (MM) has been noted. Its effect on treating MM has been confirmed in combination chemotherapies that include CAM. However, a single treatment of CAM has no efficacy for treating MM. Many myeloma growth factors (MGFs) including interleukin (IL)-6 are known to be closely involved in the development of MM. CAM has been shown to suppress many MGFs, particularly IL-6. The possible mechanisms of action of CAM in treating MM have been suggested to include its immunomodulatory effect, autophagy inhibition, reversibility of drug resistance, steroid-sparing/enhancing effect and suppression of MGFs. In addition, MM is characterised by uncontrolled cell growth of monoclonal immunoglobulin (Ig)-producing neoplastic plasma cells. Large quantities of unfolded or misfolded Ig production may trigger considerable endoplasmic reticulum stress. Thus, MM is originally a fragile neoplasm particularly susceptible to autophagy-, proteasome- and histone deacetylase 6-inhibitors. Taken together, CAM plays an important role in MM treatments through its synergistic mechanisms.

In addition, CAM with its pleiotropic effects on cytokines including IL-6 and indirect antiviral effects might be worth a try for treating COVID-19.

Related Articles

Prasanth S Ariyannur, Reenu Anne Joy, Veena Menon, Roopa Rachel Paulose, Keechilat Pavithran, Damodaran M Vasudevan
Renata Colombo Bonadio, Ana Paula Messias, Otavio Augusto Moreira, Letícia Vecchi Leis, Bruna Zanin Orsi, Laura Testa, Maria del Pilar Estevez-Diz
Alfredo V Chua Jr, Alvin Christopher S Chu, Ashraf A Tawasil, Michael D San Juan
Prisca O Adejumo, Toyin IG Aniagwu, Olutosin A Awolude, Abiodun O Oni, Olubunmi O Ajayi, Omolara Fagbenle, Dasola Ogungbade, Makayla Kochheiser, Temidayo Ogundiran, Olufunmilayo I Olopade