Positron Emission Tomography (PET) plays a major role in the early detection of various types of cancer.
A research group led by Specially Appointed Professor Katsumi Kaneko of the Research Initiative for Supra-Materials (RISM), Shinshu University have discovered a method to separate oxygen-18 from oxygen-16, an essential isotope for PET diagnosis, at high speed and high efficiency.
The results of this research were recently published online in the journal Nature Communications.
The novel method for the rapid and efficient separation of O-18 from O2-16, which is abundant in the atmosphere, was carried out with nanoporous carbon, which is made of pores smaller than 1 nanometer.
When a mixture of O2-16 and O2-18 is introduced into the nanoporous carbon, the O2-18 is preferentially adsorbed and is efficiently separated from O2-16.
The experimental separation of O2-18 from O2-16 was also conducted using the low-temperature waste heat from a natural gas storage facility.
O-18 plays a major role in the early detection of cancer.
Taking advantage of the property of cancer cells which take up much more glucose than normal cells, doctors inject a drug called 18F-FDG (fluorodeoxyglucose), which is an index of glucose metabolism and uses a PET machine to clarify which part of the body has cancer.
18F-FDG is a drug in which fluorine-18 (18F), which emits positive electricity, is attached to glucose. 18F-FDG is produced by a nuclear reaction in which O-18 is introduced before the protons are injected.
Therefore, O-18 is an important substance indispensable for PET diagnosis but was difficult to procure because only 0.2% of naturally occurring oxygen is O-18.
In order to separate O-18 from the majority of O-16 found in the atmosphere, it was necessary to distill O-18 from O-16, even though they have very similar boiling points.
This distillation required precise technology and took more than 6 months to complete.
The novel method using nanoporous carbon to distill O-18 can be used not only for PET diagnosis but for research on dementia, and this novel method can be applied to the separation of carbon and nitrogen isotopes, and other molecules useful for isotopic analysis methods and therapeutic cancer drugs.
The group expects more demand for this method and substance in the future.
Source: SHINSHU UNIVERSITY
We are an independent charity and are not backed by a large company or society. We raise every penny ourselves to improve the standards of cancer care through education. You can help us continue our work to address inequalities in cancer care by making a donation.
Any donation, however small, contributes directly towards the costs of creating and sharing free oncology education.
Together we can get better outcomes for patients by tackling global inequalities in access to the results of cancer research.
Thank you for your support.