Short Communication

Detection of methylation in the CpG islands of the P16INK4A, RASSF 1A and methylguanine methyltransferase (MGMT) gene promoters in pancreatic adenocarcinoma

15 Jan 2009
D Paikos, P Stravoravdi, S Voyatzi, I Boukovinas, P Papakotoulas, A Kiziridou, G Sibilidis, I Stergiou

Pancreatic cancer consists of an accumulation of genetic and epigenetic alterations. Recently, aberrant methylation of CpG islands of cancer-related genes has emerged as an important epigenetic mechanism of their transcriptional dysregulation during tumour development [1]. Therefore, new diagnostic methods, for early detection based on a better understanding of the molecular biology of pancreatic cancer, are required. We examined the methylation status of p16INK4A, RASSF 1A and methylguanine methyltransferase (MGMT) genes considered to be inactivated by promoter methylation in several tumours.

The p16INK4A is an important G1/S cell cycle regulator gene [2]. RASSF 1A gene is involved in apoptotic signalling, microtubule stabilization and cell cycle progression [3]. The MGMT gene removes mutagenic and cytotoxic alkyl-adducts from the O6-position of guanine in DNA. Hypermethylation of the gene leads to the inactivation of DNA repair and to microsatellite instability [4].

To date, little is known about the exact role of hypermethylation of these genes in pancreatic adenocarcinoma, as the molecular mechanisms underlying these neoplasms remain poorly understood.

Related Articles

Angelo Borsarelli Carvalho Brito, Tiago Cordeiro Felismino, Diego Rodrigues Mendonca e Silva, Maria Paula Curado, Lais Corsino Durant, Rodrigo Gomes Taboada, Adriane Graicer Pelosof, Alessandro Landskron Diniz, Felipe Jose Fernandez Coimbra
Tasneem Dawood, Yasmin Abdul Rashid, Saqib Raza Khan, Adnan Abdul Jabbar, Muhammad Nauman Zahir, Munira Shabbir Moosajee
Fernanda J Martin, Isabel M Saffie, Mabel A Hurtado, Diana Avila-Jaque, Rodrigo A Lagos, Carolina A Selman, Jonathan Z Huserman, Valentina A Castillo, Badir J Chahuán