A research group led by Prof. PIAO Hailong from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) identified hepatocellular carcinoma (HCC) subtypes with distinctive metabolic phenotypes through bioinformatics and machine learning methods, and elucidated the potential mechanisms based on a metabolite-protein interaction network and multi-omics data.
The study, published in Advanced Science, provides insights guiding precise personalised HCC medicine.
Metabolic reprogramming, which can promote rapid cell proliferation by regulating energy and nutrient metabolism, is considered to be one hallmark of cancer.
It can impact other biological processes through complex metabolite-protein interactions.
The researchers utilised complex network and machine learning methods to analyse multi-omics data and the metabolite-protein interaction network to identify hepatocellular carcinoma subtypes with significant differences in prognosis.
They identified a metabolic HCC subtype with poor prognosis, which is strongly correlated with hypoxia, hypermethylation of metabolic enzymes, down-regulation of various metabolic pathways, and accumulation of multiple fatty acids.
In addition, many immune-related pathways were significantly up-regulated in this poor prognosis subtype.
Based on further analyses of metabolite-protein interactions, the researchers predicted multiple interactions between unsaturated fatty acid and immunoregulatory proteins, suggesting that unsaturated fatty acid accumulation may be one potential cause of immune pathway up-regulation.
We are an independent charity and are not backed by a large company or society. We raise every penny ourselves to improve the standards of cancer care through education. You can help us continue our work to address inequalities in cancer care by making a donation.
Any donation, however small, contributes directly towards the costs of creating and sharing free oncology education.
Together we can get better outcomes for patients by tackling global inequalities in access to the results of cancer research.
Thank you for your support.