News

Tumour-associated immune cells hinder frontline chemotherapy drug in pancreatic cancer

27 Mar 2019
Tumour-associated immune cells hinder frontline chemotherapy drug in pancreatic cancer

A frontline chemotherapy drug given to patients with pancreatic cancer is made less effective because similar compounds released by tumour-associated immune cells block the drug's action, a study published in Cell Metabolism has reported. 

The chemotherapy drug gemcitabine is an anti-metabolite.

It's similar to normal metabolites taken up by the cell, but once inside it kills the cell by disrupting its functions - like a Trojan horse.

In pancreatic cancer, tumour immune cells release metabolites that are nearly identical to gemcitabine, and these block the activity of the drug in malignant cells, the researchers found.

These insights could be used to predict which patients will respond to gemcitabine therapy, as well as shed new light on other types of cancer where immune cells may be playing an important role in resistance to chemotherapy.

"Why does gemcitabine work pretty well in some cancers but not in pancreatic cancer, that's the big question my lab was trying to answer," said study senior author Costas Lyssiotis, Ph.D., assistant professor of Molecular and Integrative Physiology at the U-M Medical School.

Pancreatic cancer is one of the most lethal types of cancer.

It's typically aggressive and doesn't respond well to traditional chemotherapy and radiation treatments.

And although progress has been made in recent years, five-year survival rates are still in the single digits.

"Malignant cells often only make up about 10 percent of a tumour," said study first author Christopher J. Halbrook, Ph.D., a postdoctoral researcher in the Lyssiotis lab. "The remaining 90 percent are other types of cells that support the growth of that tumour - like structural cells, vasculature, and immune cells. Our work has been focused on the interaction between malignant cells and immune cells."

Large contingents of immune cells known as macrophages are often found in pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer.

And while macrophages were known to prevent the activity of gemcitabine chemotherapy, exactly how the immune cells did this had been unclear.

Lyssiotis and his collaborators at U-M and in Scotland investigated the interaction between malignant cells and tumour-associated macrophages, finding the immune cells released a host of compounds known as pyrimidines, which are metabolized by the malignant cells.

One of these compounds, deoxycytidine, has a chemical structure that's very similar to gemcitabine and directly blocks the activity of the chemotherapy drug in the malignant cells.

"Deoxycytidine basically outcompetes gemcitabine," Lyssiotis explains, who also added that the physiological reason underlying the immune cells' release of the pyrimidines is still unclear.

After genetically and pharmacologically depleting the number of tumour-associated macrophages in mouse models, the team showed that the tumours were less resistant to gemcitabine - offering a clue toward potentially making patients' tumours more responsive to chemotherapy.

The researchers also looked at data from patients with pancreatic cancer and found that patients whose tumors had fewer macrophages had responded better to treatment.

"When we think of personalised medicine, we often think about what's going inside of the malignant cells, what specific genetic mutations a patient's tumour may have," Lyssiotis said. "In our case, we're thinking about, 'What does this tumor look like as a whole? What does its ecosystem of cells look like?' And hopefully we can use an understanding of the interaction between different types of cells to develop new approaches to treatment."

Source: Michigan Medicine - University of Michigan