Cancer cells often delete genes that normally suppress tumour formation.
These deletions also may extend to neighbouring genes, an event known as "collateral lethality," which may create new options for development of therapies for several cancers.
Scientists at The University of Texas MD Anderson Cancer Center have discovered that during early cancer development when a common tumor suppressor known as SMAD4 is deleted, a nearby metabolic enzyme gene called malic enzyme 2 (ME2) also is eradicated, suggesting the possibility of malic enzyme inhibitors as a novel therapy approach.
Study findings were published in the online issue of Nature.
"In an effort to expand therapeutic strategies beyond oncogenic targets to those not directly linked to cancer development, we have identified collateral lethal vulnerability in pancreatic cancers that can be targeted pharmacologically in certain patient populations," said Prasenjit Dey, Ph.D., postdoctoral fellow in Cancer Biology and co-author of the Nature article. "Genomic data across several cancers further suggest this therapeutic strategy may aid many cancer patients, including those with stomach and colon cancers."
Collateral lethality occurs when tumour suppressor genes are deleted, a nearly universal occurrence in cancer.
Correspondingly, a large number of genes with no direct role in tumour progression also are deleted as a result of their proximity to tumour suppressor genes.
SMAD4 is deleted in one-third of pancreatic cancers.
The research team found that when the SMAD4 gene is eradicated in mice, it also results in depletion of ME2 levels.
The genetic depletion of ME3, a sister gene to ME2, sets off a complex chain of events that ultimately regulates an amino acid group called branched chain amino acid (BCAA), which are crucial to cancer's ability to thrive.
Thus, if a therapy could be developed that inhibits ME3, it might prevent ME2-deleted tumour growth.
"Our work suggests a mechanism for cell lethality involving the regulation of BCAAs as crucial elements in pancreatic cancer by regulating ME3," said Ronald DePinho, M.D., professor of Cancer Biology, senior author of the Nature paper and president of MD Anderson. "We propose that highly specific ME3 inhibitors could provide an effective therapy for many cancer patients, but more research must be done."
Source: Nature
We are an independent charity and are not backed by a large company or society. We raise every penny ourselves to improve the standards of cancer care through education. You can help us continue our work to address inequalities in cancer care by making a donation.
Any donation, however small, contributes directly towards the costs of creating and sharing free oncology education.
Together we can get better outcomes for patients by tackling global inequalities in access to the results of cancer research.
Thank you for your support.