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Abstract

Cancer immunotherapy has made rapid progress over the past decade leading to high 
enthusiasm and interest worldwide. Codelivery of immunomodulators with chemothera-
peutic agents and radioisotopes has been shown to elicit a strong and sustained immune 
response in animal models. Despite showing promising results in metastatic and recur-
rent cancers, the utilisation of immunotherapy in clinical settings has been limited owing 
to uncertainties in elicited immune response and occurrence of immune-related adverse 
events. These uncertainties can be overcome with the help of nanoparticles possessing 
unique properties for the effective delivery of targeted agents to specific sites. Nanopar-
ticles play a crucial role in the effective delivery of cancer antigens and adjuvants, mod-
ulation of tumour microenvironment, production of long-term immune response and 
development of cancer vaccines. Here, we provide a comprehensive summary of nan-
otechnology-based cancer immunotherapy and radiotherapy including basics of nano-
technology, properties of nanoparticles and various methods of employing nanoparticles 
in cancer treatment. Thus, nanotechnology is anticipated to overcome the limitations 
of existing cancer immunotherapy and to effectively combine various cancer treatment 
modalities.
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Introduction

Cancer immunotherapy, which utilises the body’s own immune system to fight against 
tumour cells, has grown in importance over the past decade. Novel strategies employed 
to enhance cytotoxic T-cell activation include chimeric antigen receptor T-cell therapy, 
immune checkpoint blockade (ICB) therapy and neoantigen vaccines [1–8]. Cancer immu-
notherapy has shown remarkable results in certain cancers which had poorer outcomes, 
especially in childhood acute lymphoblastic leukaemia, where CAR T-cell therapy target-
ing B-cell antigen (CD19) [9–13] led to an overall remission rate of 82.5% [14, 15], and 
in advanced melanoma, where cytotoxic T lymphocyte antigen 4 antibody improved the 
overall survival and 5-year recurrence-free survival [16, 17]. Compared to chemotherapy 
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and radiotherapy, immunotherapy confers greater and long-term benefits in recurrence or metastatic setting [18–20]. Despite promising 
results, the effect of immunotherapy in solid tumours is less pronounced [21, 22] due to immunosuppressive tumour microenvironment and 
abnormal extracellular matrix created in cancer cells [23–25]. This is where biomaterial-based nanoparticles can play a crucial role in the 
effective delivery of immunotherapy. 

Fundamentals of nanoparticles

Nanoparticles are nanoscale materials, usually made up of polymeric, liposomal and metallic formulations [26]. An ideal nanoparticle should 
be low-toxic, biodegradable, highly specific and cost effective [27]. Nanoparticles deliver the intended product to target sites by three 
methods: passive targeting, active targeting and physical targeting. Passive targeting is based on enhanced permeability and retention (EPR) 
effects, in which tumour cells selectively absorb nanoparticles, whereas, in active targeting, nanoparticles are coupled with ligands which 
interact with receptors over expressed in target sites. Physical targeting utilises the optical, thermal and magnetic properties of nanoparticles, 
where external sources guide them to reach the specific target sites [28].

Basis of nanotechnology application in cancer treatment

Nanotechnology-based drug delivery system has been utilised to enhance the efficacy of chemotherapy, radiotherapy and photodynamic 
therapy [29, 30]. The prime aim of using such systems is to enlarge the therapeutic window and the effective delivery of drugs [31]. Nano-
formulations have shown improvement in a therapeutic window by acting at different levels of drug pharmacokinetics. The size of nanofor-
mulations avoids renal clearance, and PEGylation prevents opsonisation by macrophages, thereby prolonging systemic circulation of drug 
[32]. The justification of cancer nanomedicine is based on the phenomenon called EPR effect [33]. The abnormal vasculature of tumour cells 
allows greater permeability, whereas the ineffective lymphatic clearance aids in the accumulation of nanoparticles inside tumour cells [34, 
35]. Nanoparticles can also target cancer cells directly, either by coupling with a ligand and binding to the receptor of cancer cells (ligand–
receptor complex) or by binding of surface moieties [36]. 

Application of nanotechnology in cancer immunotherapy

Nanotechnology used in cancer immunotherapy targets not only cancer cells but also lymphocytes and antigen-presenting cells (APCs) 
in circulation, thereby helping to generate a robust immune response. Hence, a much lower concentration of drug is needed when used 
in conjunct with immunomodulators [37]. In virtue of their high surface area to volume ratio, they are capable of carrying high-density 
peptide-major histocompatibility complex (pMHC), which, in turn, fastens the re-engagement of dissociated pMHC, and thereby delays the 
internalisation of T-cell receptors and prolongs the time for antigen presentation [38].  Therefore, the enhancement of cross-presentation 
of neoantigen to antigen-presenting cells leads to greater immune response. Nanotechnology can be used to intervene at various stages of 
cancer immunity cycle [39]. It can be used in the delivery of neoantigens for cancer vaccine development, delivery of adjuncts to increase 
immunogenicity, modulate tumour microenvironment, enhancement of immune recognition, delivery of checkpoint inhibitors and codelivery 
of checkpoint inhibitors with costimulatory immunomodulators, in adoptive immunotherapy and image-guided immunotherapy [40].

Cancer nano-vaccines

Cancer nanovaccines are designed for the effective delivery of tumour-derived protein antigens, or peptide antigens, or nucleic acid anti-
gens to APCs, which, in turn, triggers an immune response [40]. Numerous research works are going on in the development of effective 
cancer nanovaccines. One group of researchers designed a sodium alginate-based formulations containing I-131-labelled catalases, which 
would transform into a hydrogel inside tumour cells in the presence of Ca2+(calcium ion), and demonstrated a loading cytosine-guanine oli-
godeoxyneucleotide (CpG ODN) with the radio-enhanced sodium alginate formulations resulted in strong systemic immune response [41]. 
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Another group demonstrated the activation of dendritic cells, which depends on antigen association on nanoparticles and type of surfactants 
used. They reported absorption or encapsulation of antigens with nanoparticles, which increases expression of MHC Class II and MHC Class 
I, respectively, and observed a greater expression of CD86 by dendritic cells when nanoparticles are coated with polyvinyl alcohol (PVA) as 
surfactant rather than PF127. They concluded that the best antigen-specific T-cell response is produced with chitosan-mixed polylactide 
co-glycolide (PLGA) or polylactide co-glycolide block-polyethylene glycol (PLGA-b-PEG) formulation for ovalbumin antigens and CpG with 
PVA-coated, antigen-encapsulated nanoparticles [42]. 

Protein nanocarriers such as albumin–drug conjugates increase the half-life of drug in blood; potentiate draining to lymph nodes, enhance 
antigen presentation to APCs and thereby improve antitumour activity [40]. Abraxane is a nanodrug approved by the FDA, which is an albu-
min–paclitaxel conjugate used for advanced non-small cell lung cancer, metastatic pancreatic and breast cancer. Sahin et al. reported that 
the delivery of RNA-encoded antigens using DOTMA/DOPE liposomes led to a strong effector and memory T-cell responses along with 
IFN-alpha-mediated tumour rejection in animal models. A similar response was observed in their phase I trial too [43]. Nanovaccines can also 
be designed by coating natural cell membranes such as platelet membrane and leukocyte membrane onto a synthetic nanoparticulate core. 
The studies demonstrated that platelet membrane-coated nanoparticles selectively adhere to damaged vasculature and enhance binding to 
platelet-adhering pathogens, whereas leukocyte membrane-coated nanoparticles communicate with endothelial cells and transport payloads 
across inflamed reconstructed endothelium [44–46].

Co-delivery of immune adjuvants

Nanoparticles also help in the co-delivery of immune adjuvants along with antigens to avoid immune tolerance [29]. The commonly used 
adjuvants in cancer immunotherapy are lipopolysaccharide, 3-O-desacyl-4′-monophosphoryl lipid A (MPLA), Toll receptor agonists such 
as CpG oligodeoxynucleotides (ODNs) and polyinosinic:polycytidylic acid (poly I:C), agonists of the stimulator of IFN genes (STING) and 
cytokines (e.g., IL-2 and GM-CSF) [47]. Adjuvants such as CpG ODNs, STING and poly I:C are negatively charged, whereas nanoparticles 
are positively charged, and hence, they form electrostatic complexes. By virtue of which, nanoparticles can aid in the effective delivery of 
these adjuvants into APCs along with tumour antigens, thereby promoting anticancer immune response [48, 49]. When the above mecha-
nism is combined with ICB, there can be further enhanced anticancer immune response. A multifaceted immunomodulatory nanoliposomes 
developed by Lim group contain cancer membrane antigens to improve specificity towards tumour and two immunostimulatory adjuvants 
for immune stimulation such as MPLA and dimethyl dioctadecyl ammonium. This combination is denoted as tumosomes, which has shown 
to inhibit tumour growth and improve survival in mouse tumour models [50]. Nanoparticles can also deliver various anticancer therapeutic 
agents such as chemotherapy, immunotherapy and cell-based therapy to tumour sites, thereby improving therapeutic effect and minimising 
toxicity. 

Application of nanotechnology in cancer radiotherapy

Radiotherapy has been a vital component of cancer treatment for several decades. With the advent of modern radiotherapy treatment 
machines and planning systems, the therapeutic ratio of radiotherapy has significantly improved. However, there still exist many challenges 
that hinder the effective treatment of cancer with radiotherapy. The major limitations of radiotherapy are hypoxic tumours, less radio respon-
sive/radioresistant tumours, increased toxicity to adjacent normal structures and side effects while combining with chemotherapy and immu-
notherapy. These shortcomings of radiotherapy can be overcome with the help of nanotechnology.

Radioisotope delivery by nanocarriers

Radioisotopes used in radioimmunotherapy are broadly grouped into three categories based on the type of emitted particulate radiation. 
They are beta-emitters (90Y, 131I, 199Lu, 186Rh, 89Sr, 32P and 67Cu), alpha emitters (213Bi, 221At and 225Ac) and low-energy electron emitters (125I, 
67Ga, 111Ir, 99mTc and 201Th). Among the three, alpha particles have a high linear energy transfer and are more destructive. However, the 
therapeutic effect of radioisotopes is largely hindered by rapid renal clearance due to smaller size (5 nm) and opsonisation by mononuclear 
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phagocyte system [51]. This problem is overcome by loading/conjugating radioisotopes to nanocarriers. Nanoparticles such as liposomes, 
micelles and polymeric complex decrease renal clearance owing to their increased size effect (10 nm) [52–55]. Furthermore, PEGylation of 
nanoparticles prevents the adsorption of opsonins due to steric hindrance produced by the presence of polyethylene glycol (PEG). Therefore, 
radioisotope-labelled nanoparticles significantly increase the short life of radioisotopes in blood. Wang et al [56] demonstrated that 111In and 
177Lu PEGylated liposomes had a longer half-life in blood compared to 111In-DTPA in mice model. They also improve an intratumoural accumu-
lation of radioisotopes through EPR effect and decrease the dose to surrounding normal structures, thereby improving therapeutic ratio [57, 
58]. A PEGylated liposomal formulation of doxorubicin has a much slower clearance rate and an AUC 300 times greater than with free doxo-
rubicin. It also proved to have greater intratumoural drug concentration and prolonged exposure time compared to free doxorubicin [59].

Nanoformulations of radiosensitizers

Hypoxia is a major deterrent of radiation effects on tumour cells [60, 61]. Various strategies have been tried to overcome hypoxia and 
improve tumour cell kill to radiation, one among them is the usage of radiosensitizers [62]. Radiosensitizers are agents, which when used in 
conjunction with radiotherapy improve its lethal effects on tumour. An ideal hypoxic cell radiosensitizer must be chemically stable, highly 
soluble in water or lipids and more importantly selectively target tumour hypoxic cells sparing normal tissues. Various drugs of nitroimidazole 
group such as metronidazole, misonidazole, etanidazole and nimorazole have been tried as radiosensitizers [63]. Their efficacy as radiosensi-
tizer is greatly reduced by dose-limiting toxicities and less solubility [65–67]. However, nanoformulations of radiosensitizers have shown to 
improve the effective delivery of these agents to tumour sites. In a study on mice model, nanoformulation of wortmannin (phosphatidylinosi-
tol 3′ kinases & related kinases inhibitor), composed of DSPE-PEG (1,2 distearoyl-sn-glycero-3-phosphoethanolamine - polyethylene glycol) 
lipid shell and PLGA polymer core, has shown to be more effective than 5FU as radiosensitizer [68]. Similarly, nanoformulations of histone 
deacetylase inhibitor has proved to be an effective radiosensitizer used in colorectal and prostate cancer cell lines [69, 70]. Nanoformulation-
based radiosensitizers have a sustained DNA repair inhibition effect and achieve a lower concentration in normal tissues [70, 71]. 

In addition to acting as a carrier, few nanomaterials of high atomic number such as gold (Z = 79) and gadolinium (Z = 64) can act as potential 
radiosensitizers as dose absorbed by tissue is proportional to Z2 of the material. The study by Zhang et al [72] demonstrated that tumour inhi-
bition by radiotherapy can be significantly improved by using ultrasmall glutathione-coated gold nanoclusters as radiosensitizers. Combining 
radiation with gadolinium-based nanoparticles as radiosensitizers led to a significant tumour growth delay in a mouse model [73].

Usage of nanoparticles to overcome radioresistance

Radioresistance is another major factor leading to treatment failure after radiotherapy [74]. Apart from inherent less radiosensitivity of few 
tumours, it is the presence of hypoxia with central necrosis, expression of DNA repair enzymes and anti-apoptotic proteins that lead to 
radioresistance [75, 76]. Nanotechnology helps in reducing radioresistance by targeting the related signalling pathways and genes. In the 
preclinical study on tumour-bearing mice model, the administration of bevacizumab 48 hours before radiotherapy led to the normalisation of 
tumour vasculature leading to temporary tumour reoxygenation and better radiosensitivity [77]. Another approach using nanoformulations 
of small interfering RNA (siRNA) and radiotherapy has shown to have encouraging results in overcoming radioresistance. On combining iron 
oxide nanoparticles coated with PEG and PEI to siRNA, LD50 of irradiation was reduced by threefold in medulloblastoma and ependymoma 
cells [78]. A similar combination of siRNA and PEG-PEI copolymer against sCLU protein drastically reduced cell survival after 0.5 and 3 Gy 
compared to radiotherapy alone group in breast cancer cells in vitro [79]. Zheng et al [80] recognised TRAF2 (TNF receptor-associated factor 
2) as a potential target for siRNA silencing in glioblastoma cells, which led to radiosensitisation and tumour growth suppression.

Nanotechnology to combine RT and other treatment modalities

In the majority of locally advanced cancers, a multimodality treatment approach is advocated, especially chemoradiation [81]. Chemotherapy 
acts as a synergistic to radiotherapy and radiosensitizer [82]. However, the combination therapy leads to increased toxicity. Nanotechnol-
ogy can help to alleviate this problem by the selective delivery of chemotherapeutic agents to tumour sites, thereby reducing toxicity during 
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combination therapy. In addition to their synergistic effect, certain chemotherapeutic agents such as cisplatin, paclitaxel and doxorubicin also 
act as radiosensitizers [83–85]. In a tumour-bearing mice model, cisplatin delivered with upconversion nanoparticle led to enhanced effects 
by the release of both cisplatin and high metal ions [86]. The studies showed that the combination of chemotherapy and radiosensitizers in a 
single nanoparticle yields better chemotherapeutic effect than when loaded in separate nanoparticles. Au et al [87, 88] combined docetaxel 
and wortmannin in PLGA nanoparticle in an in vivo study and demonstrated that the toxicity profile of nanoparticle combined formulations 
had lesser hepatotoxicity and hematologic toxicity in comparison to the administration of each drug alone.

Another interesting prospect is targeted nanoparticle, in which the efficiency of nanoparticles is increased by surface modification of tar-
geted ligands. Commonly targeted ligands are RGD peptide, folate and transferrin [89–91]. An in vivo study with docetaxel-loaded, folate-
conjugated nanoparticle showed that targeted nanoparticle is more efficient as radiosensitizer compared to nanoparticle without targeting 
ligands [92]. In a similar study, folate-targeted nanoparticle loaded with paclitaxel and yttrium-90 as a combination therapy proved to be 
superior in a murine model with ovarian cancer with peritoneal metastasis [93].

Nanotechnology-based image-guided cancer immunotherapy and radiotherapy

Image-guided cancer immunotherapy is another aspect of immunotherapy, where inorganic/metallic nanoparticles are used not only to 
deliver tumour antigens but also to provide imaging contrast for theranostics and immunogenic cell death through heat-induced or reactive 
oxygen species [94]. Researchers developed an iron oxide–zinc oxide core–shell nanoparticle, where the zinc oxide surface binds to certain 
peptide motifs with high binding affinity, whereas the iron oxide core provides imaging contrast for monitoring the migration of the nanovac-
cine as well as the activated DCs with magnetic resonance imaging (MRI) [95]. 

Gold nanoparticles have a multiple utility in cancer treatment such as signal enhancer for CT-guided radiotherapy, radiosensitizer and agents 
for photodynamic therapy [96, 97]. They are also used as CT contrast agents to assess the response to immunomodulators [98]. Poly 
N-isopropyl acrylamide-coated gold nanoparticles in a gel matrix of sucrose acetate isobutyrate/EtOH/PLA (ethyl alcohol/polylactic acid) 
developed by Anderson et al [99] proved to be an excellent liquid fiducial tissue marker providing high-resolution micro-CT images in mice 
model for 2D X-ray visualisation. The same when used in canine cancer patient provided an enhanced image contrast for 2D X-ray and CT 
imaging with no side effects. In a mice model with intracerebral malignant gliomas, image-guided radiotherapy was delivered along with gold 
nanoparticles, where micro-CT images showed 19-fold higher intratumoural uptake of gold nanoparticles compared to normal brain [100]. 

Gold nanoparticles are also used as a part of nanocomposite, which contain two nanoparticles. Multimodal imaging with such nanocomposite 
can provide more information for accurate radiotherapy treatment delivery. In a tumour-bearing mice model, PCL-PEG micelle system loaded 
with SPIO and gold nanoparticles showed a selective accumulation in tumour and enhancement of tumour margins in MRI. Furthermore, the 
above nanocomposite improved 90-day survival rate [101]. Gold nanoparticles are also helpful in radiation in vivo dosimetry. Researchers 
developed a nanosensor composed of liquid surfactant-templated formation of coloured dispersions of gold nanoparticle, which can detect 
radiation dose from 0.5 to 2Gy. It provided the qualitative and quantitative assessment of radiation through the naked eye and absorbance 
spectrophotometer, respectively [102]. Nanosensors with upconversion nanoparticles and oxygen indicator have high sensitivity and speci-
ficity for the detection of oxygen changes in hypoxic environment and are useful in hypoxia imaging [103]. 

Challenges and future directions

After having successfully studied the properties and feasibilities of utilising nanoparticles in cancer immunotherapy through animal models, 
the biggest challenge lying ahead is translating these preclinical technologies into clinical practice. Clinical trials on combining immuno-
therapy and radiotherapy are already being conducted worldwide. Combining stereotactic body radiotherapy and nanoparticle-mediated 
dendritic cell activation resulting in ablation of tumour cells and nanoparticle-guided photodynamic therapy providing a high precision treat-
ment are potential areas to be explored in the treatment of solid tumours. The other major roadblock is that we are yet to fully understand 
the toxicity profiles of nanoparticle-mediated immune response. It is unclear whether the codelivery of immunotherapeutic agents with 
chemoradiotherapy will result in intolerable side effects. Therefore, it is mandatory to study the toxicity profiles of nanoparticles and its 
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modulation with various components of nanoformulations. With an improvement in understanding of cancer biology and cancer research, 
nanotechnology-based immunotherapy will change the treatment methodology and prognosis of advanced malignancies such as glioblas-
toma multiforme and pancreatic cancer in the near future.

Conclusion

With increasing global research on cancer immunology and biomedical engineering, the uncertainties surrounding combining nanoformula-
tions of cancer immunotherapy and radiotherapy will be answered in the coming decade. Nanotechnology-based cancer immunotherapy and 
radiotherapy will soon turn out be a golden sword in the armory of every oncologist in the fight against cancer.
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