Our website uses cookies to improve your on-site experience. By using the website, cookies are being used as described in our Policy Document
Warning: To log in you will need to enable cookies and reload the page (Policy Document)
My ePortfolio Register   
 

Abstract | Full HTML Article | PDF ecancer 9 539 / https://doi.org/10.3332/ecancer.2015.539

Review

Genetic susceptibility in childhood acute leukaemias: a systematic review

Acute leukaemias (AL) correspond to 25–35% of all cancer cases in children. The aetiology is still sheltered, although several factors are implicated in causality of AL subtypes. Childhood acute leukaemias are associated with genetic syndromes (5%) and ionising radiation as risk factors. Somatic genomic alterations occur during fetal life and are initiating events to childhood leukaemia. Genetic susceptibility has been explored as a risk factor, since environmental exposure of the child to xenobiotics, direct or indirectly, can contribute to the accumulation of somatic mutations. Hence, a systematic review was conducted in order to understand the association between gene polymorphisms and childhood leukaemia risk. The search was performed in the electronic databases PubMed, Lilacs, and Scielo, selecting articles published between 1995 and 2013. This review included 90 case-control publications, which were classified into four groups: xenobiotic system (n = 50), DNA repair (n = 16), regulatory genes (n = 15), and genome wide association studies (GWAS) (n = 9). We observed that the most frequently investigated genes were: NQO1, GSTM1, GSTT1, GSTP1, CYP1A1, NAT2, CYP2D6, CYP2E1, MDR1 (ABCB1), XRCC1, ARID5B, and IKZF1. The collected evidence suggests that genetic polymorphisms in CYP2E1, GSTM1, NQO1, NAT2, MDR1, and XRCC1 are capable of modulating leukaemia risk, mainly when associated with environmental exposures, such as domestic pesticides and insecticides, smoking, trihalomethanes, alcohol consumption, and x-rays. More recently, genome wide association studies identified significant associations between genetic polymorphisms in ARID5B e IKZF1 and acute lymphoblastic leukaemia, but only a few studies have replicated these results until now. In conclusion, genetic susceptibility contributes to the risk of childhood leukaemia through the effects of gene–gene and gene–environment interactions.

Keywords: leukaemia, genetic polymorphism, genetic predisposition to disease, environmental exposure

Loading Article Metrics ... Please wait

Related articles

Research: Creating a low-cost virtual reality surgical simulation to increase surgical oncology capacity and capability

Abstract | Full Article | PDF Published: 19 Mar 2019 / https://doi.org/10.3332/ecancer.2019.910

Review: Non-hormonal strategies for managing menopausal symptoms in cancer survivors: an update

Abstract | Full Article | PDF Published: 11 Mar 2019 / https://doi.org/10.3332/ecancer.2019.909

Case Report: Laser thermal ablation to treat a recurrent soft-tissue sarcoma of the leg: a case report

Abstract | Full Article | PDF Published: 05 Mar 2019 / https://doi.org/10.3332/ecancer.2019.908

Review: Petroclival meningiomas: radiological features essential for surgeons

Abstract | Full Article | PDF Published: 05 Mar 2019 / https://doi.org/10.3332/ecancer.2019.907

Research: Younger age and previous exposure to radiation therapy are correlated with the severity of chemotherapy-induced thrombocytopenia

Abstract | Full Article | PDF Published: 26 Feb 2019 / https://doi.org/10.3332/ecancer.2019.906



Founding partners

European Cancer Organisation European Institute of Oncology

Founding Charities

Foundazione Umberto Veronesi Fondazione IEO Swiss Bridge

Published by

ecancer Global Foundation