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Abstract 

Oxaliplatin is a third-generation platinum compound that has shown a wide range of anti-tumour activity in metastatic cancer and in 
multiple cell lines. It contains a diaminocyclohexane carrier ligand and is one of the least toxic platinum agents. In the past decade, the 
use of oxaliplatin for the treatment of colorectal cancer has become increasingly popular because neither cisplatin nor carboplatin 
demonstrate significant activity. Similar to cisplatin, oxaliplatin binds to DNA, leading to GG intra-strand crosslinks. Oxaliplatin differs from 
its parent compounds in its mechanisms of action, cellular response and development of resistance, which are not fully understood. Like 
most chemotherapeutic agents, efficacy of oxaliplatin is limited by the development of cellular resistance. ERCC1 (excision repair cross-
complementation group 1) mediated nucleotide excision repair pathway appears to be the major pathway involved in processing 
oxaliplatin, because the loss of mismatch repair does not lead to oxaliplatin resistance. Recent findings support the involvement of many 
genes and different pathways in developing oxaliplatin resistance. This mini-review focuses on the effects of oxaliplatin treatment on cell 
lines with special emphasis on colorectal cell lines. 
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Introduction 

Colorectal cancer is the third leading cause of cancer-related 
mortality in men and women in the United States. It is estimated 
that 146,970 men and women will be diagnosed with, and 
49,920 will die, of this cancer in 2009 [1]. The last three 
decades have witnessed a significant amount of basic research 
on platinum coordination complexes, leading to the pre-clinical 
screening of several thousand new molecules, of which only a 
few have entered clinical development. Although platinum drugs 
have a broad range of activity against malignant tumours, they 
are particularly active against germ cell tumours and epithelial 
ovarian cancer. In addition, they play a primary role in the 
treatment of small cell and non-small-cell lung, cervical, head 
and neck, colorectal and bladder cancer [2]. The platinum drugs 
such as cisplatin, carboplatin and oxaliplatin are used to treat a 
broad range of cancers; however, in most cases, their efficacy 
is limited by the development of resistance [3]. Due to this, the 
primary objective of researchers working in this area has been 
to identify compounds with superior efficacy, reduced toxicity, 
lack of cross-resistance or improved pharmacological 
characteristics as compared with the parent compound, 
cisplatin. Oxaliplatin (trans-L-1,2-diamino cyclohexane 
oxalatoplatinum) is a third generation platinum compound and 
the first platinum-based compound to show efficacy in the 
treatment of colorectal cancer [4] and approved for therapy as a 
front-line agent [5]. The intracellular targets and mechanisms of 
action/resistance of oxaliplatin differ from that of its 
predecessors, cisplatin and carboplatin. It is important to note 
that oxaliplatin is more active in colon cells [6], and that 
cisplatin-resistant cell lines are sensitive to oxaliplatin [7, 8]. 

 

Intracellular targets and mechanisms of 
action 

Oxaliplatin and cisplatin are structurally distinct, but form the 
same types of adducts at the same sites on DNA [9–13]. In 
physiological conditions, oxaliplatin forms DNA adducts that are 
not at dynamic equilibrium [14]. Upon entering the cell, 
oxaliplatin first forms a transient monoadduct and then forms a 
stable diadduct, by mostly binding to the N(7) site of the 
guanine residues [15]. Intra-strand adducts are most abundant, 
and if not repaired, will block both DNA replication and 
transcription. Although platinum adducts can form inter-strand 
crosslinks by DNA–protein interaction, the proteinase resistant 

crosslinks are usually less than 1% of the total platinum adducts 
[16]. 

Oxaliplatin belongs to 1,2-diaminocyclohexane (DACH) carrier 
ligand family, whereas cisplatin and carboplatin belong to cis-
diammine. There are some differences between compounds 
belonging to these families. 

1. Bulkiness: DACH-Pt-DNA ligands are bulkier and more 
hydrophobic than cis-diammine-Pt-DNA and, perhaps, 
therefore, they are more effective in inhibiting DNA 
synthesis and are superior cytotoxic compounds [17]. 

2. Bond constraint: N–Pt–N bond angle is more 
constrained for DACH-Pt-DNA adducts than for cis-
diammine-Pt-DNA adducts [18]. This might lead to 
slower mono-adduct to di-adduct conversion of DACH-
Pt-DNA, leading to less stable adducts. 

3. Computer modelling: the modelling indicated that this 
ring protrudes directly outward into and fills much of 
the narrowed major groove of the bound DNA, forming 
a markedly altered and less polar major groove in the 
area of the adduct. The differences in the structure of 
the adducts produced by cisplatin and oxaliplatin are 
consistent with the observation that they are 
differentially recognized by the DNA mismatch repair 
system, cisplatin being more easily recognized [11]. A 
detailed kinetic analysis of the insertion and extension 
steps of dNTP incorporation in the vicinity of the 
adduct shows that both DNA polymerase beta (pol 
beta) and DNA polymerase eta (pol eta) catalyse 
trans-lesion synthesis past oxaliplatin-GG adducts with 
greater efficiency than past cisplatin-GG adducts [19]. 

 

Oxaliplatin processing 

Mismatch repair proteins, DNA damage-recognition proteins 
and trans-lesion DNA polymerases discriminate between Pt-GG 
adducts containing cis-diammine ligands (formed by cisplatin 
and carboplatin) and trans-RR-diaminocyclohexane ligands 
(formed by oxaliplatin) [19,20]. It is known that mismatch repair 
proteins, such as MutS and hMSH2 bind to cisplatin, but not to 
oxaliplatin adducts [21]. Loss of mismatch repair produces low 
levels of resistance to cisplatin but not oxaliplatin [22]. So, 
nucleotide excision repair pathway appears to be the major 
pathway involved in the processing of oxaliplatin. 
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Figure 1: DNA strand dual incision, 5' incision by ERCC1-XPF heterodimer is 22 nucleotide from lesion and 3' incision by XPG is six 
nucleotides from the lesion

Low levels of XPA, a protein involved in making a nick at the 
third end of the platinum adduct, in the tests tumour cell lines is 
sufficient to explain their poor ability to remove platinum adducts 
from DNA [23,24]. 

 

Nucleotide excision repair 

ERCC1 and ERCC2 (xeroderma pigmentosa—XPD) are the 
two major genes involved in this pathway. It has been 
previously shown that the expression levels of the ERCC1 gene 
can significantly affect the ability of the drug to influence survival 
in patients with colon cancer [25]. 

The nucleotide excision repair (NER) reaction is carried out by a 
multi-enzyme complex and involves a stepwise process of 
recognition, incision, excision, repair synthesis and ligation 
[26,27]. ERCC1 along with XPF forms a critical heterodimer of 
the NER pathway because of its damage recognition creation of 
nick 5' to the lesion [26, 28–35]. XPF-ERCC1 is also known to 
be involved in recombinational DNA repair and in the repair of 
inter-strand crosslinks [36]. Figure 1 shows simplified steps in 
NER pathway. 

While there are indications that the relative ERCC1 mRNA level 
is a good marker for NER activity in human cancer cells, it is 
unclear whether expression of this gene has any relationship to 
other pathways of DNA repair [37]. In a study of 50 patients with 
ERCC1 gene expression ≤ 4.9 × 10(−3) (40 of 50 patients) had 
a median survival time of 10.2 months, compared with 1.9 

months for patients with ERCC1 expression greater than 4.9 × 
10(−3) (p < .001) [25]. 
 
Cellular response 

There have been several studies on the cellular response of 
oxaliplatin in different types of cancer cell lines, sometimes 
suggesting contrasting results. In a study involving four cancer 
cell lines, ovarian and an inherently cisplatin-resistant colon 
(HT-29), ERCC1 mRNA levels measured after exposure to 
oxaliplatin for 20 hours were higher than in the control—the 
A2780 (ovarian) cell line [8]. Further, it was shown that, relative 
to cisplatin, a lower intracellular concentration and fewer DNA-
Pt adducts are sufficient for oxaliplatin to exert its cytotoxicity 
[8]. Oxaliplatin is also capable of altering the voltage-gated 
sodium channels, thereby inducing both acute and chronic 
toxicity [38]. Another group studied the combination of 
irinotecan and oxaliplatin in HCT-8, a colorectal cancer cell line, 
and xenograft models and observed that ERCC1 expression 
was unregulated on exposure to oxaliplatin. Addition of 
irinotecan abrogated this effect, with the potential for synergy 
between the two drugs by the inhibition of DNA repair and 
increased cytotoxicity of the platinum [39]. In another study, it 
was shown that siRNA knockdown of ERCC1 expression 
resulted in sensitivity to oxaliplatin in the HeLa S3 (cervical 
cancer) cells [40]. 

Cytotoxicity of oxaliplatin on a panel of six colon cell lines in 
vitro showed that glutathione and glutathione S-transferase
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activity were not correlated to oxaliplatin cytotoxicity. Further, 
the expression of ERCC1 and XPA (xeroderma pigmentosum 
group A) demonstrated that ERCC1 expression was predictive 
of oxaliplatin sensitivity [41]. When DNA microarray analysis 
was used to analyse the transcriptional profile of resistant 
HCT116 colorectal cancer cells that were treated with oxaliplatin 
or 5-fluorouracil (5-FU), bioinformatic analyses identified sets of 
genes that were constitutively dysregulated in drug-resistant 
cells and transiently altered following acute exposure of parental 
cells to drug. This leads to the proposition that these genes may 
represent molecular signatures of sensitivity to oxaliplatin and 5-
FU [42]. 

 

Resistance 

The existing body of literature suggests that the rate of NER 
may have a major impact on the emergence of resistance and 
normal tissue tolerance to platinum drugs [43]. DNA adducts are 
differentially recognized by a number of cellular proteins. For 
example, mismatch repair proteins and some damage-
recognition proteins bind to cisplatin-GG adducts with higher 
affinity than to oxaliplatin-GG adducts, and this differential 
recognition of cisplatin- and oxaliplatin-GG adducts is thought to 
contribute to the differences in cytotoxicity and tumour range of

cisplatin and oxaliplatin [19]. Elevation of glutathione mediated 
by gamma-glutamyl transpeptidase has also been shown to be 
a mechanism of oxaliplatin resistance [8]. Oxaliplatin-resistance 
may also involve multiple other pathways like down-regulation 
of pyruvate kinase M2 [44], altered mitochondrial-mediated 
apoptosis [45] and phosphoinositide-3- kinase (PI3K)/Akt 
activation [46]. DNA microarray studies suggest the involvement 
of large number of genes in developing oxaliplatin resistance 
[42,47]. 

 

Conclusion and outlook 

Although platinum drugs are one of the most widely used anti-
cancer agents, the outcome of the treatment depends upon the 
drug resistance. Oxaliplatin has been shown to exhibit broad 
spectrum anti-tumour activity including a subset of cisplatin 
resistant cell lines. Pre-clinical studies have shown that ERCC1 
gene expression plays critical role in the effectiveness of 
oxaliplatin treatment. Ongoing research will lead to the better 
understanding of the association between the expression levels 
of DNA excision repair genes and the response to oxaliplatin 
treatment. The goal of the ongoing research is to lead to the 
development of more effective compounds in this class. 
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