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Abstract

Chloroquine (CQ) and hydroxychloroquine (HCQ) are well-known 4-aminoquinoline antimalarial agents. Scientific evidence also supports 
the use of CQ and HCQ in the treatment of cancer. Overall, preclinical studies support CQ and HCQ use in anti-cancer therapy, especially 
in combination with conventional anti-cancer treatments since they are able to sensitise tumour cells to a variety of drugs, potentiating the 
therapeutic activity. Thus far, clinical results are mostly in favour of the repurposing of CQ. However, over 30 clinical studies are still evalu-
ating the activity of both CQ and HCQ in different cancer types and in combination with various standard treatments. Interestingly, CQ and 
HCQ exert effects both on cancer cells and on the tumour microenvironment. In addition to inhibition of the autophagic flux, which is the 
most studied anti-cancer effect of CQ and HCQ, these drugs affect the Toll-like receptor 9, p53 and CXCR4-CXCL12 pathway in cancer 
cells. In the tumour stroma, CQ was shown to affect the tumour vasculature, cancer-associated fibroblasts and the immune system. The 
evidence reviewed in this paper indicates that both CQ and HCQ deserve further clinical investigations in several cancer types. Special 
attention about the drug (CQ versus HCQ), the dose and the schedule of administration should be taken in the design of new trials.

Keywords: Repurposing Drugs in Oncology (ReDO) project, drug repositioning, chloroquine (CQ), hydroxychloroquine (HCQ), neoplasms, 
antineoplastic agents, anti-malarial agents.
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Introduction

Chloroquine (CQ) and hydroxychloroquine (HCQ) are both 4-aminoquinoline agents that have been used for more than 70 and 50 years, 
respectively, to prevent or to treat malarial infections and later also for treating discoid and systemic lupus erythematosus and rheumatoid 
arthritis. Although HCQ and CQ differ only by one hydroxyl group, the addition of this hydroxyl group results in an important decrease in 
toxicity, while the efficacy remains constant, at least for malaria [1]. Both drugs are available as generic products and mentioned on the 
WHO list of essential medicines. Frequently used trade names of CQ include Avloclor, Nivaquine or Aralen, and the most frequently used 
trade name for HCQ is Plaquenil. 

The mechanisms of action of CQ and HCQ against the malarial Plasmodium parasite and against the auto-immune disorders for which 
they are approved are well known [2–6]. 

Dosage

The dosage of CQ depends on the indication [3, 4]. It should be noted that CQ is often marketed as chloroquine phosphate (CQ-phosphate) 
in tablets of 250 mg, which corresponds to about 150 mg of CQ. All doses mentioned below are doses of CQ-phosphate. High doses (1 g of 
CQ-phosphate per day) are administered in acute phases of malaria or amoebic hepatitis, but only for one or two days. The usual dose for 
long-term use (rheumatoid arthritis and lupus) is 250 mg of CQ-phosphate per day. For HCQ, doses for long-term use range between 200 
and 400 mg per day. Long-term administration of CQ and HCQ in children is not recommended, but doses for long-term treatment between 
2 and 5 mg/kg for HCQ have been reported [7].

Toxicity

Short-term administration of CQ or HCQ rarely causes severe side effects. Longer exposure has been associated with some serious 
though uncommon adverse events [3], including cardiomyopathy [8], irreversible retinal toxicity [9, 10], bone marrow suppression [11] and 
hypoglycaemia [12]. The risk of retinopathy is increased with large cumulative doses of HCQ (>1000 g). However, daily doses up to 400 
mg of HCQ or 250 mg CQ for several years are considered to carry an acceptable risk for CQ-induced retinopathies, with the exception of 
individuals of short stature [13]. It is advised that patients receiving chronic CQ or HCQ therapy be monitored through regular ophthalmic 
examinations (3–6 month intervals), full blood counts and blood glucose level checks. CQ has been associated with some cases of diffuse 
parenchymal lung disease and drug rash with eosinophilia and systemic symptoms (DRESS) syndrome [3]. In case of long-term HCQ 
exposure, skeletal muscle function and tendon reflexes should be monitored for weakness. 

For both CQ and HCQ, specific caution is advised in patients suffering from impaired hepatic function (especially when associated with 
cirrhosis), porphyria, renal disease, epilepsy, psoriasis, glucose-6-phosphate dehydrogenase deficiency and known hypersensitivity to 
4-aminoquinoline compounds [3]. 

Bioavailability

CQ and HCQ are amphiphilic weak bases with the ability to cross cell membranes easily, which is important for their mechanism of action in 
malaria treatment and prophylaxis. CQ and HCQ are partially protonated at the physiologic pH (7.4), but they can be trapped in lysosomes 
(pH 4–5) because of bi-protonation [14]. CQ has pKa values of 8.4 and 10.2, while HCQ has pKa values of 8.3 and 9.7 [14, 15]. 

Both CQ and HCQ have a high bioavailability, 89% and 74% respectively, and a large distribution volume after oral administration. Roughly, 
50%–70% of CQ is protein-bound in the plasma [3]. The terminal elimination half-life of CQ is 1–2 months and for HCQ approximately 50 
days in blood (32 days in plasma). Both drugs are partially metabolised by hepatic dealkylation, but they differ in the number of the metabo-
lites produced. The active metabolites of CQ are monodesethylchloroquine and bisdesethylchloroquine, while HCQ has one extra active 
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metabolite, namely desethylhydroxychloroquine. Moreover, CQ and HCQ are slowly excreted and may still be detected in urine several 
months after administration [3, 4, 9].

Pre-clinical evidence in cancer—in vivo

CQ and HCQ have been extensively studied both in vitro and in vivo in various cancer types. This paper focuses on the results from in vivo 
research, since this is most relevant to clinical practice. Both drugs can be administered as monotherapy or as adjuvant agents to increase 
the efficacy and to limit drug resistance of standard anti-cancer therapy.

Monotherapy

Table 1 lists the main characteristics [animal models, tumour types, animal (H)CQ doses and human equivalent doses (HED)] of the in vivo 
studies performed with CQ or HCQ alone.

Table 1. In vivo studies investigating the efficacy of CQ and HCQ monotherapy.
Reference Animal model Tumour type Animal (H)CQ dose HED[149]

Jutten et al [16] NMRI-nu (nu/nu) female mice Xenografts of U373-EGFRwt 
and U373 control cells

CQ: 60 mg/kg/day for seven 
consecutive days (IP)

292 mg/day

Kim et al [17] NMRI nude mice Xenografts of U87MG cells CQ: Intracranial administration 
of 5µl with a concentration of 
30 mM/day for 17 days

/

Song et al [18] Male athymic BALB/c nu/nu mice Xenografts of CD133+ and 
CD133- cells isolated from Huh 
7 cells 

CQ: 60 mg/kg, twice weekly 
(IP) 

292 mg twice 
weekly

Hu et al [19] Nude mice Xenograft of HepG2-GFP  
human liver
cancer cells

CQ: 80 mg/kg twice daily, on 
a 3-day-on/2-day-off schedule 
for 25 days (SC)

398 mg twice 
daily (3 day-on/2 
day-off)

Lakhter et al [20] NOD-SCID mice Xenografts of SKMel23 cells CQ: 25 mg/kg, twice weekly for 
3 weeks (IP)

122 mg twice 
weekly

Zheng et al [21] Female BALB/c mice Transplantation of CT26 cells CQ: 50 or 25 mg/kg/day for 28 
days (IP)

243 or 122 mg/
day

Jiang et al [22] Female BALB/c mice Transplantation of 4T1 mouse 
cells

CQ: 50 or 25 mg/kg/day for 28 
days (IP)

243 or 122 mg/
day

Loehberg et al [23] Wistar-Furth virgin female rats NMU-induced mammary ad-
enocarcinoma (IP, 50 mg/kg)

CQ: 3.5 mg/kg/week for 3 
weeks (IP)

34 mg/week

Loehberg et al [23] BALB/c mice Transplantation of mammary 
ducts from 7- to 8-week-old 
p53-null BALB/c mice 

CQ: 3.5 mg/kg/week for 8 
weeks (IP)

17 mg/week

Maclean et al [24] ATM-null, p53-null mice (C57BL/6J) 
or Eμ-Myc transgenic mice 
(C57BL/6J) 

Lymphoma CQ: 3.5 mg/kg, every 5 days 
(combined oral/IP or IP alone) 

17 mg every 
5 days

Sun et al [25] Male Sprague Dawley rats DEN-induced hepatocarcinoma CQ: 50 mg/kg, every 3 days 
during week 0 to 9 or during 
week 10 to 17 (IP)

486 mg every 
3 days
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Table 1. continued.

Maes et al [26] Immunocompetent syngeneic (C57/
Bl6) or immunodeficient(nu/nu) mice

Xenografts of A375m and 
transplantation of B16-F10 
mouse cells 

CQ: 50 or 100 mg/kg/day (IP) 243 or 486 mg/ 
day

Maycotte et al [28] Female Nude nu/nu mice Xenografts of MCF7 and MD-
AMB231 cells

CQ: 60 mg/kg/day (IP) 292 mg/day

Yang et al [27] NCr nude mice (Taconic) Xenografts of 8988T, H460 
cells, and panc1 cells and 
an orthotopic PDAC model 
with 8988T cells grown in the 
pancreata

CQ: 60 mg/kg/day (IP) 292 mg/day

Hiraki et al [29] Bashford cancer, Ehrlich ascites and solid cancer, MH134 tumour 
maintained in inbred strains Strong A, C3H, RIll, and RF mice, Yoshida 
ascites and solid tumours carried in Wistar and random-bred rats, and 
Brown-Pearce carcinoma transplanted in albino male rabbits

CQ: 6 - 15 mg/kg/day
(IP, IV, SC, oral) 

58 – 292 mg/day

Pellegrini et al [30] Female NMRI nu/nu mice Xenografts of HCT116 and 
HT29 cells

CQ: 20 mg/kg, every 2 days for 
16 days (IP)

97 mg every 2 
days

Dutta et al [32] Female inbred F344 rats Transplantation of R3230AC 
mammary adenocarcinoma

CQ: 45 mg/kg, 
5 days a week for 25 days (IP)

438 mg 5 days a 
week

Yamaguchi et al [33] Adult female C3H/HeN mice and 
adult male dd-mice

Transplantation of spontane-
ous C3H mammary carcinoma, 
Bashford carcinoma 63 and 
Ehrlich ascites tumours

CQ: 0.2 mg/2 days for 12 days 
(IP)

/

Chi et al [34] Transgenic flies (Drosophila) RasV12 tumours CQ- containing medium (final 
concentration: 1 mg/ml)

/

Rosenfeldt et al [35] KrasG12D/-p53-/- and KrasG12D/-
p53+/+ mice

Pancreatic ductal adenocarci-
noma

HCQ: 60 mg/kg/day (IP) 292 mg/day

Abbreviations: CQ (chloroquine), HCQ (hydroxychloroquine), EGFR (epidermal growth factor receptor), IP (intraperitoneal), NOD SCID mice (non-obese 
diabetic, severe combined immunodeficiency mice), NMU (N-methyl-N-nitrosourea), ATM (ataxia telangiectasia mutated), DEN (diethylnitrosamine), IV 
(intravenous), SC (subcutaneous), HED (Human Equivalent Dose).

Starting with in vivo studies that observed beneficial effects of CQ administration in cancer, Jutten et al noted a delayed tumour growth in 
mice bearing epidermal growth factor receptor (EGFR)-overexpressing glioblastoma xenografts in response to CQ administration. In addi-
tion, the time to reach four times the initial tumour volume was significantly longer in the CQ-treated group [16]. Kim et al confirmed this 
observation in another glioblastoma xenograft mouse study, where CQ was injected intracranially. They observed that the number of mitotic 
cells was significantly reduced and the number of apoptotic cells was increased after CQ administration [17]. In addition, a significant reduc-
tion of tumour volume and tumour incidence was shown by Song et al [18] in mice bearing liver cancer stem cells and Hu et al [19] observed 
significant tumour growth and weight reduction in an orthotopic xenograft model of liver cancer after CQ administration. Lakhter et al [20] 
demonstrated that CQ significantly reduced both tumour volume and tumour mass in a human melanoma xenograft model. Zheng et al [21] 
showed reduced tumour progression and prolonged survival time (not significant) in colon cancer-bearing mice when administering either 
25 or 50 mg/kg of CQ.

Doses of 25 and 50 mg/kg of CQ both significantly increased survival time and reduced primary tumour volume in mice implanted with 
a highly metastasizing breast cancer cell line, as shown by Jiang et al. Interestingly, the number and diameter of lung metastases was 
reduced as well, and CQ enhanced tumour cell apoptosis in the high dose group [22]. 
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The incidence of mammary tumours and their growth rate was significantly lower and tumour onset was delayed in CQ-pre-treated rats after 
being subjected to mammary adenocarcinoma induction using N-methyl-N-nitrosourea (NMU), as shown by Loehberg et al. In wild-type 
BALB/c mice transplanted with mammary ducts of BALB/c p53-null mice, CQ pre-treatment did not affect tumour incidence [23]. Maclean 
et al confirmed that CQ could not prevent spontaneous tumour formation in p53-deficient mice. In contrast, intermittent CQ administration 
significantly reduced the tumour development and doubled the overall survival (OS) of Eμ-Myc mice [24]. 

Furthermore, Sun et al showed that CQ administration is effective in reducing tumour growth in rats with established hepatocarcinoma. In 
contrast, CQ promoted tumour development in the earlier so-called dysplastic stage, clearly illustrating the dual role of autophagy in tumour 
formation (see section on mechanisms of action) [25]. Finally, Maes et al [26] reported that either a dose of 50 mg/kg or a dose of 100 mg/
kg of CQ can reduce tumour growth and cell proliferation, dependent on the cell type. Of note, this study showed that CQ not only inhibits 
autophagy but also affects the tumour microenvironment and tumour vasculature. The exact working mechanisms will be clarified in the 
section on mechanisms of action.

Some studies noted that the efficacy of CQ application in anti-cancer therapy depends on the tumour type that is being treated and sug-
gested that the autophagy dependency of tumour cells might play a role [27, 28]. For example, tumour growth was significantly reduced 
in an MDAMB231 xenograft mouse model, but not in an MCF-7 xenograft mouse model, while both models showed signs of autophagy 
inhibition after CQ treatment [28]. A similar observation can be made when comparing CQ efficacy in pancreatic cancer mouse models 
and a lung cancer mouse model: CQ significantly slowed down tumour growth and increased survival in the first, but not in the latter [27]. 
Another study by Hiraki et al [29] investigated the effects of CQ in various in vivo cancer models and demonstrated that CQ is more effective 
in connective tissue-rich Bashford and Brown–Pearce tumours than in Ehrlich, Yoshida and MH134 tumours. 

A lack of efficacy in certain tumour models could potentially be explained by a study performed by Pellegrini et al exploring the effects of 
CQ under acidic conditions, which mimics the tumour environment. CQ bi-protonation under those conditions could impede cytotoxicity, 
because the cellular uptake of CQ is reduced. This observation highlights a possible limitation of CQ in anti-cancer therapy. However, the 
sensitivity of tumour cells might be restored using tumour pH-modulating agents [30]. Ironically, hypoxic cells that can increase acidification 
of the extracellular space through anaerobe glycolysis are often more autophagy-dependent and, therefore, more sensitive to CQ treat-
ment, as shown by in vitro studies [31].

A limited amount of studies reported potential detrimental effects of CQ and HCQ in in vivo cancer models. First, CQ pre-treatment of rats 
one week before a subcutaneous injection with mammary adenocarcinoma and follow-up treatment for 18 days following this event signifi-
cantly enhanced tumour weight and volume in these rats [32]. Second, in a 1966 paper, very low CQ doses (0.2 mg/2 days) led to a more 
infiltrative morphological pattern of the advancing margin of subcutaneously transplanted mammary carcinoma in mice [33]. Third, malig-
nant tumour growth and metastasis of Ras(V12) cells is observed in transgenic drosophila models after CQ administration [34]. Importantly, 
HCQ promoted tumour growth in Ras-driven pancreatic tumours developing without p53(KrasG12D/+p53–/–) [35]. Collectively, these results on 
a possible detrimental effect of (H)CQ emphasise the importance of the specific tumour setting and tumour characteristics when targeting 
autophagy (see section on mechanisms of action) [35, 36].

Combination therapy

Table 2 summarises the information from articles that studied the effect of CQ (n = 46) or HCQ (n = 5) in vivo in combination with other 
therapies. A more interesting and still under-explored treatment approach for a complex disease such as cancer is to combine various 
anti-cancer agents acting at different levels in the tumour cells and microenvironment [37]. Interestingly, CQ and HCQ have already 
been tested in combination with over 40 other drugs in preclinical cancer research. Both CQ and HCQ can effectively increase the 
efficacy of various anti-cancer drugs, which is further explained in the section on mechanisms of action. Therapies used in combination 
with CQ or HCQ include chemotherapeutic drugs, tyrosine kinase inhibitors, various monoclonal antibodies, hormone therapies and 
radiotherapy (Table 2).
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Table 2. Overview of in vivo research combining known anti-cancer agents with either CQ or HCQ.

Reference (H)CQ Intervention Animal model Tumour type Therapeutic effect of combination 
therapy

Golden et al [150] CQ Temozolomide (TMZ) 4- to 6-week-old male 
athymic nu/nu mice

U87MG glioma cells Higher levels of the proapoptotic protein 
C/EBP homologous protein/growth ar-
rest- and DNA damage-inducible gene 
153 (CHOP/GADD-153)

Zanotto-Filho
et al [151]

CQ TMZ
(+curcumin)

8-week-old male wistar 
rats

C6 brain cells Autophagy inhibition and significantly 
reduced tumour growth 

Gaudin et al [152] CQ Cyclophosphamide 
(Cytoxan)

Golden Syrian hamster Melanoma and plas-
macytoma

Sensitisation to cyclophosphamide

Lefort et al [153] CQ Cyclophosphamide
(+Adriamycin)

6-week-old female 
Swiss nude mice

MDA-MB-231 human 
breast cancer cells 

Significant tumour growth inhibition and 
reduction of lung metastases

Amaravadi
et al [129]

CQ Cyclophosphamide 8-to-10-week-old 
C57BL/6 ×129F1 mice

Myc/p53ERTAM lym-
phomas

Tumour growth inhibition and significant 
delay of tumour recurrence

Yu et al [154] CQ Cisplatin 4-to-6-week-old female 
BALB/c nu/nu mice 

EC109/CDDP human 
oesophageal cells

Significantly lower tumour growth rate 

Zhang et al [155] CQ Cisplatin 8-week-old female 
BALB/c mice

SGC7901 human 
gastric cancer cells 

Significantly reduced tumour volume and 
weight

Zhao et al [156] CQ Cisplatin 5-to-6-week-old 
BALB/c nude mice

FaDu human hypopha-
ryngeal cells

Prolonged survival 

Ding et al [157] CQ Oxaliplatin 4-week-old male athy-
mic BALB/c nude mice

Huh7 hepatocarci-
noma cells 

Significantly reduced tumour volume

Selvakumaran
et al [158]

CQ Oxaliplatin
(+bevacizumab)

8-to-10-week-old 
female C.B.17 SCID 
mice

HT29 human colon 
carcinoma cells

Significant tumour growth delay

Liang et al [107] CQ Carboplatin immunodeficient 
SCID-Beige mice

SUM159 cells breast 
cancer cells (ortho-
topic)

Significantly reduced tumour growth, 
decreased mitochondrial metabolic activ-
ity, decreased cell viability and increased 
levels of LC3b-II and p62 

Balic et al [83] CQ Gemcitabine Immuno-compromised 
mice

patient- derived PDAC 
tumour tissues 

Effective tumour elimination and 
improved overall survival

Shoemaker 
et al [159]

CQ 5-FU Young adult female 
C3H mice

C3HBA mammary 
carcinoma 

Significantly reduced tumour size

Guo et al [160] CQ 5-FU 5-week-old male 
athymic BALB/c nu/
nu mice

SMMC-7721 hepato-
carcinoma cells

Significantly reduced tumour volume and 
weight and significantly higher levels of 
apoptosis

Sasaki et al [161] CQ 5-FU 6-week-old female 
BALB/c mice

Colon26 colon cancer 
cells

Significantly increased inhibition of 
tumour growth and increased number of 
apoptotic cells and proapoptotic protein 
expression levels
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Table 2. continued.

Shoemaker et al 
[162]

CQ 5-FU 
(+ 6-propyl-
thiouracil)

Adult female C3H/He 
mice

C3HBA breast cancer 
cells

Significant tumour reduction

Xiong et al [163] CQ Daunorubicin Female DBA/2 mice 
on a folate-deficient 
diet

L1210JF leukaemia 
cells

No effect

Arnold et al [164] CQ Etoposide Female CBA/Ca mice TLX5 murine ascitic 
tumour cells

Significant improvement in increased life 
span

Cook et al [165] HCQ Tamoxifen and
faslodex 

5-week-old, intact, 
athymic nude mice

Tamoxifen-resistant 
MCF7-RR and faslodex-
resistant /Tamoxifen 
cross-resistant LCC9 
ER+ breast cancer cells

Significantly reduced tumour size and 
tumour wet weight with HCQ and  
tamoxifen, no effect with faslodex and 
HCQ

Loehberg
et al [72]

CQ Everolimus 4-to-6-week-old,  
female NMRI nu/nu 
mice

MCF7 breast cancer 
cells

Significant tumour suppression

Seront et al [166] CQ Rapamycin 8-week–old female 
NMRI nude mice

MDA-MB-231 and 
MCF-7 breast cancer 
cells

Tumour growth reduction in mice 
implanted with large, hypoxic mammary 
tumours (not in smaller tumours)

Bray et al [167] CQ Temsirolimus nude mice RCC4 renal carcinoma 
cells

Significantly reduced tumour growth

Kaneko et al [168] CQ Temsirolimus 4-to-6-week-old 
BALB/c nu/nu and 
BALB/c mice 

CaR-1, HT-29, colon26 
colon cancer cells

Significantly reduced tumour growth

Xie et al [169] HCQ Temsirolimus 6-week-old male nude 
NCr Nu-M mice 

UACC903 melanoma 
cells 

Significantly tumour suppression and 
slower tumour growth

Rao et al [170] CQ Panobinostat NOD/SCID mice MB-231-luciferase 
mammary cells

Slight additional decrease in tumour 
growth as compared to CQ or Panobino-
stat monotherapy, but significant increase 
in survival time

Carew et al [171] CQ Vorinostat Female nude BALB/c 
mice 

HCT8 colon cancer 
cells

Significantly enhanced tumour reduction

Ding et al [172] CQ Bortezomib 6-to-8-week-old female 
BALB/c mice

HCT116 colon cancer 
cells

Significant inhibition of tumour growth 
and higher levels of apoptosis

Hui et al [173] CQ Bortezomib nude mice MHCC-97H and Huh-7 
hepatocarcinoma 
tissues 

Significantly reduced tumour growth and 
increased apoptosis

Tang et al [174] CQ Gefitinib 6-week-old male 
BALB/c nude mice

PC-9/wt and PC-9/
gefB4 lung cancer 
cells 

Significantly reduced tumour growth
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Table 2. continued.

Dragowska
et al [175]

HCQ Gefitinib female Rag2M 
immune-compromised 
mice

JIMT-1 breast cancer 
cells 

58% tumour reduction

Bokobza
et al [176]

CQ Gefitinib
(+ Akt inhibitor)

BALB/c female nude 
mice

HCC-827 lung cancer 
cells 

Significantly inhibited tumour growth 
compared to the control, addition of 
Akt inhibitor or chloroquine to gefitinib 
increased anti-tumour effects, but was 
not found to be significant.

Zou et al [177] HCQ Erlotinib 5-to-6-week-old athy-
mic nude mice

H358 or H460 human 
NSCLC cells

Significant sensitisation to erlotinib 
therapy

Bellodi et al [178] CQ Imatinib Sub-lethally irradiated 
C3H/HeJ mice

MigRI GFP-LC3b–
transduced 32D-
p210BCR/ABL cells

Significant sensitisation to imatinib 
therapy

Abdel-Aziz 
et al [179]

CQ Sunitinib Female Swiss albino 
mice

Ehrlich ascites carci-
noma cells

Significantly reduced tumour growth and 
weight 

Shimizu 
et al [180]

CQ Sorafenib BALB/c nude mice Huh7 hepato-carcino-
ma cells

Significantly suppressed tumour growth

Shi et al [181] CQ Sorafenib Male athymic BALB/c 
nude mice

MHCC97-L hepatocel-
lular cells

Significantly reduced tumour growth and 
increased apoptosis

Ji et al [182] CQ Crizotinib 6- to 7-week-old fe-
male CD-1 nude mice

crizotinib-resistant 
H3122CR-1 lung can-
cer cells

Sensitisation of drug resistant lung can-
cer cells to crizotinib

You et al [183] HCQ Crizotinib 5-to-6-week-old female 
athymic BALB/c nude 
mice

SPC-A1 human lung 
cancer cells

Significantly reduced tumour growth and 
increased apoptosis

Mitou et al [184] CQ Crizotinib 6-week-old female 
NOD-SCID mice

Karpas-299 lymphoma 
cells

Significantly reduced tumour growth and 
increased apoptosis

Shen et al [185] CQ Vandetanib 6-to-8-week-old female 
BALB/c nude mice

U251 glioblastoma 
cells 

Significantly reduced tumour growth and 
increased apoptosis

Hu et al [186] CQ Bevacizumab 6-to-8-week-old female 
BALB/c nu/nu mice

1) GBM39 primary 
glioma cells
2) Subcutaneous 
U87MG glioma cells
3) G55 glioma cells
4) patient-specimen 
derived SF8244 cells

Significantly suppressed GBM39, 
U87MG, G55, and patient specimen-
derived SF8244 tumour growth

Selvakumaran
et al [158]

CQ Bevacizumab
(+ oxaliplatin)

8-to-10-week-old 
female C.B.17 SCID 
mice

HT29 human colon 
carcinoma cells

Significantly delayed tumour growth
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Table 2. continued.

Cufi et al [187] CQ Trastuzumab 4-to-5-week-old female 
athymic nude mice

JIMT-1 breast cancer 
cells 

Significantly reduced tumour growth and 
increased Bax/Bcl-2 ratio

Gaudin et al [152] CQ Radiotherapy Golden Syrian hamster Melanoma and  
plasma cytoma

Increased sensitivity of melanoma and 
plasma cytoma tumour cells to X-rays

Ratikan et al [188] CQ Radiotherapy 6-week-old female  
H-2 3H/Sed//Kam and 
H-2 Rag2-/-, gamma  
c -/-mice

MCaK breast cancer 
cells

Significantly higher cure rate,  
delayed tumour growth and enhanced 
immunogenicity

Wei et al [189] CQ PDT NOD/SCID mice PROM1/CD133+ 
colorectal cancer
stem cells

Restoration of sensitivity to PDT

Liang et al [190] CQ HDIL-2 8-to-10-week-old 
female C57BL/6
(B6, H-2b) mice

luciferase-labeled 
mouse MC38 colorec-
tal cancer cells 

Significantly reduced tumour growth and 
prolonged survival time

Thomas et al [191] CQ Nelfinavir
Celecoxib

Athymic mice MDA-MB-468 and 
MCF-7 breast cancer 
cells 

Triple-drug treatment displayed obvious 
anti-cancer
effects in both TNBC (MDA-MB-468) and 
non-TNBC (MCF-7) xenograft (=proof of 
principle study, more extensive in vivo 
experiments needed)

Harhaji-Trajkovic et 
al [192]

CQ Caloric restriction 5-to-6-week-old female 
C57BL/6 mice

B16 melanoma cells Combination of CQ and caloric restric-
tion almost completely abolished B16 
melanoma growth

Thomas et al [193] CQ Hyperthermia male white Ajax mice C-1300 murine neuro-
blastoma

! Increased tumour growth and metas-
tasis

Gao et al [194] CQ TACE Adult New Zealand 
White rabbits

VX2 liver tumours Significantly reduced tumour volume and 
growth rate

Abbreviations: CQ (chloroquine), HCQ (hydroxychloroquine), SCID (severe combined immunodeficiency mice), PDAC (pancreatic ductal adenocarcino-
ma), 5-FU (5-fluorouracil) NOD (non-obese diabetic), wt (wild-type), PDT (photodynamic therapy), HDIL-2 (high-dose interleukin-2), TACE (transcatheter 
arterial chemoembolisation)

Human data

Numerous clinical trials in which either CQ or HCQ is being used to treat patients with a range of cancer types are registered in clinical 
trial databases. In clinical trials, these drugs are most often administered in combination with other anti-cancer agents. More information 
on the registered clinical trials is provided in Tables 3 and 4, for CQ and HCQ, respectively. Few trials have been completed. Therefore, 
limited published data are available on the safety and therapeutic efficacy of these antimalarial drugs in cancer. A schematic overview of 
the published clinical trial data of CQ and HCQ can be found in Tables 5 and 6, respectively. 

In the next section, the clinical effects of CQ and HCQ will be discussed separately because important differences can be observed in 
toxicity and efficacy of both drugs.
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Table 3. Information on clinical trials investigating CQ use in cancer (Source: ClinicalTrials.gov).
ClinicalTrials.gov ID Type of cancer Intervention Study 

Phase
Location Status First  

received
Last verified

NCT00224978 GBM CQ
(+ conventional 
treatment)

Phase 3 Mexico Completed Sept 2005 Nov 2009

NCT01438177 Multiple myeloma CQ,
Velcade,  
Cyclophosphamide

Phase 2 US Completed, 
has results

Sept 2011 June 2016

NCT01727531 Brain metastasis CQ, 
Radiation therapy 

Not provided US Completed Nov 2012 Apr 2015

NCT01777477 Pancreatic cancer CQ, 
Gemcitabine 

Phase 1 Switzerland Completed Jan 2013 Sept 2015

NCT01894633 Brain metastasis CQ,  
Radiotherapy 

Phase 2 Mexico Terminated June 2013 July 2013

NCT01469455 Local metastatic  
melanoma

CQ,
DT01, 
Radiotherapy

Phase 1 France Completed Oct 2011 June 2016

NCT01023477 Ductal carcinoma in situ CQ 
(Procedure: breast 
biopsy)

Phase 1 - 2 US Ongoing Dec 2009 Sept 2016

NCT00969306 Small cell lung cancer CQ Phase 1 The Netherlands Recruiting Aug 2009 Feb 2016

NCT01446016 Breast cancer CQ,
Taxane, 
Taxotere, 
Abraxane, 
Ixabepilone

Phase 2 US Recruiting Sept 2011 Sept 2016

NCT01575782 Small cell lung cancer CQ,
Radiotherapy

Phase 1 The Netherlands Recruiting Apr 2012 Sept 2016

NCT02071537 Advanced solid tumours CQ, 
Carboplatin,  
Gemcitabine

Phase 1 US Recruiting Feb 2014 Dec 2015

NCT02333890 Breast cancer CQ (and placebo)
(prior to surgery)

Phase 2 Canada Recruiting Jan 2015 Nov 2016

NCT02366884 Neoplasms Anti-Bacterial 
Agents, 
Anti-Fungal Agents, 
Anti-Protozoal 
Agents

Phase 2 Mexico Recruiting Feb 2015 Aug 2015

NCT02496741 Glioma, 
Cholangiocarcinoma, 
Chondrosarcoma

CQ, 
Metformin 

Phase 1 - 2 The Netherlands Recruiting June 2015 Nov 2015

NCT02378532 GBM CQ, 
Radiotherapy, 
Temozolomide

Phase 1 The Netherlands Recruiting Feb 2015 Aug 2016

NCT02432417 Glioblastoma, 
Astrocytoma (Grade IV)

CQ,  
Radiotherapy

Phase 2 Not provided Not yet 
recruiting

Apr 2015 Apr 2016
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Table 3. continued.

NCT03243461 Glioblastoma WHO 
Grade IV, Diffuse Mid-
line Glioma Histone 3 
K27M, WHO Grade IV 
Anaplastic Astrocytoma 
WHO Grade III, Diffuse 
Intrinsic Pontine Glioma, 
Gliomatosis Cerebri

Radiochemotherapy 
with 
Temozolomide, 
Valproic Acid or 
Chloroquine

Phase 3 Germany Not yet 
recruiting

Aug 2017 Oct 2017

Table 4. Information on clinical trials investigating HCQ use in cancer (Source: ClinicalTrials.gov).
ClinicalTrials.

gov ID
Type of cancer Intervention Study Phase Location Status First  

received
Last verified

NCT00765765 Breast cancer HCQ,  
Ixabepilone

Phase 1 - 2 US Terminated,  
has results

Oct 2008 Nov 2013

NCT00786682 Prostate cancer HCQ, 
Docetaxel

Phase 2 US Terminated,  
has results

Nov 2008 Sept 2013

NCT00728845 Lung cancer HCQ,
Bevacizumab,  
Carboplatin, 
Paclitaxel 

Phase 1 - 2 US Terminated,  
has results

Aug 2008 Sept 2013

NCT01026844 Non-small cell lung  
cancer

HCQ, 
Erlotinib

Phase 1 US Terminated,  
has results

Dec 2009 June 2013

NCT01842594 Soft tissue sarcoma HCQ, 
Sirolimus

Phase 2 Taiwan Terminated, 
has results

Dec 2012 Oct 2015

NCT01144169 Renal cell carcinoma HCQ 
(prior to surgery)

Phase 1 US Terminated June 2010 Oct 2016

NCT01417403 Bone metastases 
unspecified adult solid 
tumour

HCQ,  
Radiation therapy 

Phase 1 US Terminated Aug 2011 Feb 2015

NCT00771056 B-cell chronic lympho-
cytic leukaemia

HCQ Phase 2 US Terminated Oct 2008 Aug 2016

NCT00714181 Unspecified adult  
solid tumour

HCQ,  
Temozolomide

Phase 1 US Completed July 2008 Feb 2016

NCT01396200 Multiple myeloma HCQ, 
Rapamycin, 
Cyclophosphamide, 
Dexamethasone

Phase 0 US Completed July 2011 Feb 2013 

NCT01634893 Refractory or relapsed 
solid tumours

HCQ, 
Sorafenib

Phase 1 US Completed July 2012 Mar 2016

NCT01828476 Prostate cancer HCQ, 
Abiraterone, 
ABT-263 

Phase 2 US Completed Mar 2013 Mar 2016

NCT01006369 Colorectal cancer HCQ,
Bevacizumab,  
FOLFOX6,  
XELOX regimen
(capecitabine,  
oxaliplatin) 

Phase 2 US Suspended Oct 2009 Dec 2014
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Table 4. continued.

NCT00726596 Prostate cancer HCQ Phase 2 US Ongoing July 2008 Dec 2015

NCT00813423 Adult solid neoplasm HCQ,  
Sunitinib malate

Phase 1 US Ongoing Dec 2008 Nov 2016

NCT00909831 Unspecified adult  
solid tumour

HCQ, 
Temsirolimus

Phase 1 US Ongoing May 2009 Feb 2016

NCT00962845 Melanoma HCQ (prior to 
surgery)

Phase 0 US Ongoing Aug 2009 July 2016

NCT00977470 Non-small cell lung  
cancer

HCQ,
Erlotinib

Phase 2 US Ongoing Sept 2009 Sept 2016

NCT01128296 Pancreatic cancer HCQ,  
Gemcitabine (prior 
to surgery)

Phase 1 - 2 US Ongoing May 2010 Jan 2015

NCT01273805 Pancreatic cancer HCQ Phase 2 US Ongoing Jan 2011 Jan 2016

NCT01480154 Advanced solid  
tumours, melanoma, 
prostate or kidney cancer

HCQ,
Akt Inhibitor 
MK2206

Phase 1 US Ongoing Nov 2011 Feb 2016

NCT01689987 Relapsed or refractory 
multiple myeloma

HCQ,
Cyclophosphamide,  
Dexamethasone,  
Sirolimus

Phase 1 US Ongoing Sept 2012 Aug 2016

NCT01897116 Melanoma HCQ, 
Vemurafenib

Phase 1 US Ongoing June 2013 July 2016

NCT02421575 Prostate cancer HCQ (before  
prostatectomy or 
local therapy)

Phase 0 US Ongoing Dec 2014 July 2016

NCT01494155 Pancreatic cancer HCQ,
Capecitabine,  
Radiation: Proton or 
Photon
Radiation Therapy 

Phase 2 US Ongoing July 2011 Sept 2016

NCT01602588 Glioblastoma HCQ, 
Short Course  
radiotherapy

Phase 2 UK Ongoing May 2012 Nov 2016

NCT02470468 Stage IV non-small  
cell lung cancer

DCVAC, 
Standard of Care 
Chemotherapy 
(Carboplatin,  
Paclitaxel), 
Immune enhancers 
(Interferon-α and 
HCQ) 

Phase 1 - 2 Czech  
Republic 
and 
Slovakia

Ongoing June 2015 Nov 2016

NCT01023737 Malignant solid tumour HCQ, 
Vorinostat

Phase 1 US Recruiting July 2009 Sept 2016

NCT01206530 Colorectal cancer HCQ,  
Oxaliplatin,  
Leucovorin,  
5-fluorouracil,  
Bevacizumab

Phase 1 - 2 US Recruiting Sept 2010 Sept 2016
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Table 4. continued.

NCT01266057 Advanced cancers HCQ,  
Sirolimus,  
Vorinostat

Phase 1 US Recruiting Dec 2010 Nov 2016

NCT01510119 Renal cell carcinoma HCQ,  
RAD001

Phase 1 - 2 US Recruiting Jan 2012 Dec 2015

NCT01506973 Advanced and  
metastatic adenocarci-
noma

HCQ, 
Gemcitabine/ab-
raxane

Phase 1 - 2 US Recruiting Jan 2012 Sept 2016

NCT01550367 Metastatic renal cell  
carcinoma

HCQ,  
IL-2 

Phase 1 - 2 US Recruiting Feb 2012 May 2015

NCT01649947 Non-small cell lung  
cancer 

HCQ,
Paclitaxel, 
Carboplatin,  
Bevacizumab

Phase 2 US Recruiting July 2012 July 2016

NCT01978184 Pancreatic cancer HCQ,
Gemcitabine,  
Abraxane

Phase 2 US Recruiting Oct 2013 Dec 2015

NCT02013778 Hepatocellular carcinoma HCQ,  
TACE

Phase 1 - 2 US Recruiting Dec 2013 Sept 2016

NCT02232243 Solid tumour HCQ (prior to 
surgery)

Phase 1 US Recruiting Sept 2014 Oct 2016

NCT02257424 Advanced BRAF  
mutant melanoma

HCQ,
Dabrafenib, 
Trametinib

Phase 1 - 2 US Recruiting Oct 2014 June 2016

NCT02316340 Colorectal cancer HCQ, 
Vorinostat,  
Regorafenib

Phase 2 US Recruiting Dec 2014 Sept 2016

NCT02414776 Oestrogen receptor  
positive breast cancer

HCQ, 
Hormonal therapy

Phase 1 
(1b/2)

US Recruiting Jan 2015 Apr 2015

NCT02631252 Acute myeloid leukaemia HCQ, 
Mitoxantrone, 
Etoposide

Phase 1 US Not yet  
recruiting

Dec 2015 Dec 2015

NCT02722369 Small cell lung cancer HCQ,
Gemcitabine, 
Carboplatin, 
Etoposide

Phase 2 Not  
provided

Not yet  
recruiting

Mar 2016 Nov 2016

NCT00486603 Brain and central  
nervous system tumours

HCQ,  
Temozolomide,  
Radiation

Phase 1 - 2 US Unknown June 2007 May 2012

NCT00568880 Multiple myeloma and 
plasma cell neoplasms

HCQ,
Bortezomib

Phase 3 US Unknown Dec 2007 July 2009

NCT00809237 Non-small cell lung  
cancer

HCQ,
Gefitinib

Phase 1 - 2 Singapore Unknown Dec 2008 Dec 2013

NCT01227135 Chronic myeloid  
leukaemia

HCQ,  
Imatinibmesylate

Phase 2 UK Unknown Oct 2010 Nov 2011

NCT01292408 Breast cancer HCQ Phase 2 The Netherlands Unknown Dec 2010 Jan 2012

Abbreviations: FOLFOX6 (folinic acid – 5- fluorouracil – oxaliplatin), XELOX (capecitabine – oxaliplatin), IL-2 (interleukin-2), TACE (trans catheter arterial 
chemoembolisation), DCVAC (dendritic-cell based immunotherapy)
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Table 5. Publications reporting clinical trial results on CQ use in cancer.

Article Tumour type Phase Intervention CQ dose # patients
Therapeutic 

response

Briceño et al [38]
Glioblastoma 
multiforme Unknown

CQ + conventional 
cancer treatment 150 mg/day 18 (9 CQ + 9 control) Positive

Sotelo et al [39]
Glioblastoma 
multiforme Phase 3

CQ + conventional 
cancer treatment 150 mg/day 30 (15 CQ + 15 control) Partial 

Briceño et al [41]
Glioblastoma 
multiforme

Retrospec-
tive  
study 
based on 
patient 
data

CQ + conventional 
cancer treatment 150 mg/day

123 (41 CQ + 82 
control) Positive

Rojas-Puentes  
et al [43] Brain metastases Phase 2 CQ + radiotherapy 150 mg/day 73 (39 CQ + 34 control) Partial 

Eldredge et al [44] Brain metastases Unknown CQ + radiotherapy 250 mg/day 20 (all CQ, no control) Partial

Montanari et al [49]
Relapsed and refractory 
multiple myeloma

Phase 
1 - 2

CQ + bortezomib + 
cyclophosphamide 500 mg/day 8 (all CQ, no control) Partial

Kyle et al [50] Multiple myeloma Unknown

CQ + prednisone + 
cyclophosphamide +
caffeine 2x 250 mg/day 38 (18 CQ + 20 control) Absent

Table 6. Publications reporting clinical trial results on HCQ use in cancer.

Article Tumour type Phase Intervention HCQ dose # patients
Therapeutic 

response

Rangwala et al [51]
Advanced solid tumours  
and melanoma Phase 1 HCQ + temsirolimus RD: 2x 600 mg/day 39 (all HCQ, no control) Partial

Rangwala et al [52]
Advanced solid tumours  
and melanoma Phase 1 HCQ + temozolomide RD: 2x 600 mg/day 40 (all HCQ, no control) Partial

Mahalingam et al 
[53] Advanced solid tumours Phase 1 HCQ + vorinostat MTD: 600 mg/day 27 (all HCQ, no control) Partial

Chi et al [54] Stage IV solid tumours Pilot
HCQ + sirolimus + 
chemotherapy 400 mg/day 25 (all HCQ, no control) Partial

Rosenfeld et al [55] GBM Phase 1–2
HCQ + radiotherapy 
+ temozolomide MTD: 600 mg/day 92 (all HCQ, no control) Absent

Goldberg et al [57] Advanced NSCLC Phase 1 HCQ + erlotinib RD: 1000 mg/day 27 (all HCQ, no control) Partial

Vogl et al [59]
Relapsed and refractory 
multiple myeloma Phase 1 HCQ + bortezomib RD: 2x 600 mg/day 25 (all HCQ, no control) Partial

Boone et al [60]
Pancreatic adenocarci-
noma Phase 1–2 HCQ + gemcitabine RD: 1200 mg/day 35 (all HCQ, no control) Partial

Wolpin et al [61]
Metastatic pancreatic  
adenocarcinoma Phase 2 HCQ 

400 and 600 mg/
day 20 (all HCQ, no control) Absent

Chi et al [62] Sarcoma Phase 2 HCQ + sirolimus 2x 200 mg/day 10 (all HCQ, no control)

Absent, study 
was closed 
prematurely

Abbreviations: MTD (maximal tolerated dose), RD (recommended dose), NSCLC (non-small cell lung cancer)



Cl
in

ic
al

 S
tu

dy

 15 www.ecancer.org

ecancer 2017, 11:781

CQ

Glioma and brain metastases

In May 1998, one of the first clinical trials on CQ use in cancer was started, which was an open, prospective, randomised controlled 
study with 18 glioblastoma multiforme (GBM) patients [38]. The test group consisted of nine patients who received 150 mg CQ daily after 
resection of the lesion, in addition to radiotherapy (total dose of 6000 Gy) and four cycles of carmustine-chemotherapy every six weeks  
(200 mg/m2), while the nine patients in the control group received placebo instead of CQ. In the abstract of this study, the authors reported 
that adjuvant CQ administration significantly enhanced patient survival [33 ± 5 months for CQ-treated patients and 11 ± 2 months for con-
trols (p < 0.0002)]. Due to some inconsistencies in the report, the calculation of the mean survival in the CQ-treated group is unclear, but the 
Kaplan Meier analysis remains significant. A higher seizure frequency was observed in the CQ-treated group and could not be explained. 
However, standard antiepileptic treatment was reported to easily suppress these seizures. The same group of researchers started a similar 
randomised, double blind, placebo-controlled study in October 2000 [39]. In this second study, 15 GBM patients received 150 mg CQ each 
day for 12 months after surgery in combination with their conventional anti-cancer therapy, four cycles of carmustine-chemotherapy every 
five weeks (200 mg/m2) and a total radiation dose of 60 Gy; the other 15 patients received adjuvant placebo treatment. A median survival 
time of 24 months was observed in the CQ-treated group, as compared with 11 months in the control group. In addition, the hazard ratio for 
death was approximately half as large in the patients receiving CQ though this was not statistically significant (hazard ratio: 0.52, [95% CI 
0.21–1.26, p = 0.139]). No important adverse effects were noted in this trial. The small sample size is an important limitation in both stud-
ies, and larger clinical trials are needed to confirm the efficacy of CQ in GBM therapy [39, 40]. In a retrospective study, the same research 
group looked at data collected over five years from 41 GBM patients in Mexico who received adjuvant CQ therapy and did not participate 
in the previously mentioned clinical trials [41]. The mean survival time of these CQ-treated patients was significantly longer compared with 
a control group of 82 glioblastoma patients [25 ± 3.4 months and 11.4 ± 1.3 months after surgery respectively (p = 0.000)].

After the observation of promising outcomes in five recurrent GBM patients treated with 250 mg CQ a day and reirradiation for 20 months 
[42], a phase-2 clinical trial tested the effects of CQ as a radio-sensitising agent in patients with brain metastases [43]. In this trial, 39 
patients were administered whole-brain irradiation (30 Gy in 10 fractions over two weeks) in combination with a daily dose of 150 mg CQ 
for four weeks, while 34 patients received placebo instead of CQ in addition to the same radiation treatment. The overall response rate or 
OS did not improve after CQ administration. However, the progression-free survival of brain metastases rate was increased (CQ-treated 
group: 83.9% [95% CI 69.4–98.4] and control group: 55.1% [95% CI 33.6–77.6] (at one year), relative risk: 0.31 [95% CI 0.1–0.9, p = 
0.046]). The absence of adverse effects and the improved local control of brain metastases indicate that CQ might be a useful addition to 
whole brain irradiation in patients with brain metastases. In a prospective, single-cohort study of 20 patients with brain metastases from 
solid tumours, 250 mg CQ daily was administered for five weeks in combination with whole-brain irradiation [44]. The intracranial response 
rate corresponded to an objective clinical response of 93% after three months of whole-brain irradiation, there was a slight, positive trend 
in OS (median OS of 5.7 months, compared with 4.2 months for patients in class II estimated by the radiation therapy oncology group 
recursive partitioning analysis), and no adverse reactions were detected. Finally, two case reports mentioned unusual skin reactions after 
concomitant use of CQ and radiation, illustrating the radio-sensitising effect of CQ [45, 46].

In a paediatric patient with a recurrent BRAF V600E mutant brainstem ganglioglioma, tumour growth was blocked and vemurafenib sensi-
tivity restored following treatment with 150 mg CQ daily for at least 30 months [47, 48]. The same research group reported in vitro and ex 
vivo data showing that autophagy inhibition was able to improve the response to BRAF inhibition in resistant tumour cells [48]. Next, CQ 
was administered to two patients with acquired resistance to BRAF inhibition. The first patient was treated with standard doses of vemu-
rafenib plus 250 mg daily of CQ during focal radiation of large primary lesions. Vemurafenib was continued and the CQ dose was increased 
to 500 mg daily after completion of radiation. A rapid favourable clinical response to the combination therapy was observed in as little as 
six weeks and was maintained for seven months, at which point the patient had to stop therapy for unrelated medical issues. The second 
patient was treated with 500 mg CQ daily in combination with standard dosing of vemurafenib. Acquired resistance to vemurafenib was 
overcome within four weeks of the addition of CQ and clinical improvement could be observed, which was maintained for two and a half 
months. However, therapy had to be stopped and the family chose to pursue palliative therapy afterwards. 
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Multiple myeloma

Eleven patients with relapsed and refractory multiple myeloma were enrolled and treated with 500 mg CQ daily (on days 1–14 and 22–35) 
in addition to bortezomib and cyclophosphamide (administered orally twice daily) in a phase-2 clinical trial [49]. Of these eleven patients, 
only eight patients were evaluable. CQ was able to partially restore the bortezomib sensitivity: three patients had a partial response, one 
had stable disease and four had progression as best responses.

The adjuvant therapeutic effect of 250 mg CQ twice daily in combination with cyclophosphamide and prednisone was tested for a period 
of ten days in 38 myeloma patients [50]. Twenty patients received cyclophosphamide and prednisone, while the other 18 patients received 
extra treatment with CQ and caffeine, but no additional response was observed in the CQ-treated patient group.

HCQ

Solid cancers

The effect of HCQ and temsirolimus combination therapy was tested in 27 patients with advanced solid cancer during a phase-1 dose-escalating 
study and subsequently in 13 patients with metastatic melanoma at the phase-2 recommended dose [51]. No patient experienced an objec-
tive response but 19 out of the 27 phase-1 patients (73%) and 9 out of 13 melanoma patients (69%) had stable disease. In patients with stable 
disease, HCQ addition was shown to produce metabolic stress in the tumours. Inhibition of autophagy (see section on mechanisms of action), 
measured by counting the number of autophagic vacuoles per cell in tumour tissues and peripheral blood mononuclear cells of patients, was only 
noted in patients receiving at least 1200 mg HCQ daily. This study recommends an adjuvant HCQ dose of 600 mg, twice daily.

Next, the combinatory effect of HCQ and temozolomide was investigated in 40 cancer patients with advanced solid tumours and mela-
noma, and the recommended dose of 600 mg twice daily was confirmed [52]. HCQ was shown to successfully inhibit autophagy, as evi-
denced by the significant accumulation of autophagic vacuoles in peripheral blood mononuclear cells (mean autophagic vacuole counts: 
2.19 at baseline, 2.45 after HCQ treatment, 3.84 after treatment with HCQ plus TMZ [difference between HCQ plus TMZ and baseline: p = 
0.0007, difference between HCQ plus TMZ and HCQ only: p = 0.0034]). 

The safety and preliminary efficacy of HCQ and vorinostat combination treatment was tested during a phase-1 study in 27 patients with 
advanced solid tumours [53]. In this study, the maximum-tolerated HCQ dose was set at 600 mg daily in combination with 400-mg vorino-
stat. A confirmed durable partial response was observed in a renal cell carcinoma patient, and prolonged stable disease was seen in two 
colorectal cancer patients. In contrast to the previous study, autophagy was not significantly affected.

Finally, in a pilot retrospective study, 25 stage-IV cancer patients (various types) who had no clinical response to maximally tolerated che-
motherapy and to first-line metronomic chemotherapy were treated with sirolimus (2 mg/day) and the autophagy inhibitor HCQ (400 mg/
day) in addition to their current metronomic chemotherapy for at least three months. The therapy was reported to be relatively safe, and 
the overall response rate was 40%, with an 84% disease control rate [54]. However, this was a retrospective analysis requiring cautious 
interpretation.

Glioblastoma

The efficacy and safety of HCQ was studied in combination with radiotherapy and temozolomide in 92 GBM patients during a phase-1–2 
study [55]. This study indicated a maximum tolerated dose (MTD) of 600 mg HCQ a day in this therapeutic setting. OS did not seem to 
be affected in comparison with the temozolomide arm of the trial reported by Stupp [56], and autophagy was not found to be consistently 
inhibited in all patients.

Lung cancer

The combination of HCQ with erlotinib can be used safely in daily doses of 150 mg erlotinib and 1000 mg HCQ, as determined by a phase-1 
study in 27 patients with advanced non-small cell lung cancer (NSCLC) [57]. Of the 19 patients who remained in the study, one had a partial 
response and four had stable disease as best response. Subsequent ophthalmic surveillance on seven trial participants who had taken 
HCQ for a duration longer than six months showed that retinal toxicity occurred in two patients after 11 and 17 months of exposure [58]. 
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This highlights the importance of retinal toxicity monitoring (via high-resolution spectral-domain optical coherence tomography, fundus auto 
fluorescence imaging, Humphrey visual field testing and multifocal electroretinography) during clinical trials with HCQ.

Multiple myeloma

During a phase-1 study, the safety of the combination of HCQ and bortezomib was explored in 25 patients with relapsed or refractory 
myeloma [59]. A dose of 600 mg HCQ twice daily was reported to be safe and tolerable in combination with standard doses of bortezomib. 
The increase in the number of autophagic vacuoles was not significantly associated with clinical response or HCQ exposure. Of 22 evalu-
able patients, three (14%) had very good partial responses, three (14%) had minor responses, ten (45%) had stable disease for at least 
one cycle and six (27%) had immediate progression.

Pancreatic cancer

The safety of the combination of pre-operative HCQ (1200 mg daily) and gemcitabine administration was demonstrated in 35 patients with 
pancreatic adenocarcinoma in a phase-1–2 trial [60]. This study reported promising clinical response markers (e.g. CA 19–9 biomarker 
and R0 resection rate). An exploratory analysis showed significantly improved disease-free survival and OS (15.03 versus 6.9 months and 
34.83 versus 10.83 months, respectively) in patients for whom autophagy was sufficiently inhibited (n = 8) (at least 51% increase in the 
autophagy marker LC3B-II in peripheral blood mononuclear cells) compared with other patients (n = 9). 

Next, a phase-2 study investigated the safety and efficacy of HCQ monotherapy with either 400 or 600 mg two times a day in 20 patients 
with previously treated metastatic pancreatic cancer, but no significant differences were observed between groups [61]. In addition, inhibi-
tion of autophagy could not be achieved consistently, as shown by LC3B-II analysis in the lymphocytes of patients, and the two-month 
progression-free survival rate was only 10%. 

Sarcoma

The combination of 1 mg sirolimus and 200 mg HCQ twice daily for two weeks was tested in ten sarcoma patients who had failed first-line 
treatment [62]. This study started from the hypothesis that there is metabolic symbiotic relationship between cancer-associated fibroblasts 
(CAFs) and sarcoma cells (see mechanisms of action). The study showed that this relationship might be altered by treatment with sirolimus 
and HCQ as glycolysis was inhibited within the tumours. Based on FDG PET response criteria, two weeks after treatment initiation, six 
patients showed partial response, three had stable disease and one had progressive disease. However, most patients discontinued treat-
ment before the initially planned eight-week response assessment, for disease progression.

Mechanism of action

Multiple hypotheses have been proposed on how CQ and HCQ exert their anti-cancer activity. Most studies reported the direct action of 
these drugs on cancer cells, but more recent studies have also mentioned important effects of CQ and HCQ on the tumour microenviron-
ment. Based on preclinical studies, it is safe to say that CQ and HCQ have multiple mechanisms of action that might complement each 
other. 

The most relevant and evidence-based mechanisms of action of CQ and HCQ in anti-cancer treatment will be briefly explained in the next 
section. The benefits of combining these antimalarial drugs with existing anti-cancer treatments will also be described. In the final section, 
the variation in sensitivity of cancer patients to CQ and HCQ therapy will be clarified.

Direct anti-tumour effects

The main and most studied anti-cancer effect of CQ and HCQ is the inhibition of autophagy, but other preclinically proven anti-cancer 
activities of the antimalarial agents include influencing the TLR9/nuclear factor kappa B (NF-κB) signalling pathway, the CXCL12/CXCR4 
signalling pathway and the p53 pathway.
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Autophagy inhibition

Autophagy literally means ‘self-eating’. It is a process in which a cell destroys old or defective cellular components, thereby releasing cel-
lular building blocks including nucleotides, amino acids and fatty acids. Those degradation products can later be recycled by the cell to meet 
its metabolic needs. Autophagy is an essential intracellular process to ensure cell survival under stressful conditions (e.g. hypoxia, starva-
tion and organelle damage). Different types of autophagy exist but, here, we will use the term to refer to macroautophagy. Autophagy is a 
complex multi-faceted process [63]. One putative biomarker is the level of LC3B-II, an essential protein during autophagosome formation 
and the level of scaffolding protein p62 [or sequestosome 1 (SQSTM1)] [64, 65]. Autophagy has both pro-tumour and anti-tumour functions, 
which may be both stage and tissue-type specific.

In early carcinogenesis, autophagy has a tumour suppressive role since it has an important quality control function and protects the cell by 
sequestering and eliminating defective cellular components, such as damaged mitochondria, and by maintaining cellular homeostasis [66, 
67]. In addition, several autophagic proteins can directly suppress tumour formation (e.g. Beclin-1, UVRAG and Bif-1) and autophagy has 
been shown to degrade tumour promoting proteins as well (e.g. p62/SQSTM1) [68]. In line, deregulation of autophagy has been repeatedly 
associated with human cancers [67]. 

In contrast, autophagy can promote tumour growth in more advanced stages of cancer [69]. Pro-survival autophagy is induced in response 
to a variety of stressful conditions including but not limited to, starvation, loss of proteostasis, organelle damage and hypoxia. Some 
anti-cancer treatments can also induce pro-survival autophagy. Autophagic properties such as nutrient recycling can support cancer cell 
survival. Moreover, key regulators of cell growth can be degraded and the DNA damage response can be suppressed through increased 
autophagy [66–68]. Therefore, inhibition of autophagy can be an interesting anti-cancer strategy when cancer cells start depending on 
autophagy for survival, a moment called the autophagic switch [64, 70]. 

CQ and HCQ inhibit the autophagic flux at a late stage (Figure 1): the fusion of the autophagosomes with the lysosomes and subsequent 
degradation of the autolysosome. Upon entering the lysosomes, CQ and HQ become protonated, which leads to their entrapment in acidic 
lysosomes and an increase in the lysosomal pH, which inhibits the lysosomal degradative enzymes [71]. Loehberg et al [72] suggested that 
CQ might also modulate autophagy by modifying the PI3K/Akt/mTOR pathway.

In summary, autophagy plays a dual role in cancer and the success of autophagy inhibition, using the late stage inhibitors CQ and HCQ, 
depends on the timing and context. Autophagy is an interesting therapeutic target after the autophagic switch. However, the autophagy 
dependency of the tumour cells and any combinatory therapies can influence the sensitivity to autophagy inhibition, which will be  
discussed later. 

Figure 1. Autophagic process. (1) Elongation of the phagophore and vesicle formation. (2) Fusion of the autophagosome and a lysosome. 
(3) Destruction of the engulfed cellular components by lysosomal hydrolases. CQ and HCQ inhibit autophagy through interference with the 
lysosomal acidification (Step 2). 
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Inhibition of the TLR9/nuclear factor kappa B signalling pathway

TLR9, a member of the Toll-like receptor family, is located in the endosomal compartment. This receptor recognises unmethylated single 
stranded DNA and is necessary for pathogen recognition and innate immune system activation. In cancer, expression and stimulation of 
TLR9 is linked with invasiveness, as shown in in vitro experiments [73–75]. Moreover, the expression levels of TLR9 are higher in hepato-
cellular carcinoma, oesophageal, lung, breast, gastric and prostate cancer cells as compared with adjacent noncancerous cells, and high 
expression is often linked with poor prognosis [73–76]. Because of this observation, it was suggested that TLR9 might be an appropriate 
anti-cancer target [73, 74, 76]. 

The TLR9-mediated activation of the NF-κB signalling pathway and the associated enhanced expression of matrix metalloproteinase-2 
(MMP-2), MMP-7 and cyclo-oxygenase 2 mRNA, all factors associated with tumour progression and migration, can explain the role of TLR9 
in cancer [73, 74]. At first, CQ was thought to inhibit this pathway by inhibiting endosomal acidification. However, CQ most likely modifies 
the structure of the nucleic acids responsible for TLR activation to prevent binding to TLRs [77]. An in vitro study also showed that invasion 
of brain cancer cells is hypoxia-induced through upregulation of TLR9 expression, which could be significantly inhibited by CQ [78].

In contrast, low expression of TLR9 is reported to be associated with a poorer prognosis in patients with triple-negative breast cancer. CQ 
had a promising effect on tumour growth and invasiveness, independent of the TLR9 status in triple-negative breast cancer cells in vitro, 
but it did not reduce the growth of orthotopic triple-negative breast cancer tumours in vivo [79, 80]. 

Inhibition of CXCL12/CXCR4 signalling

The interaction between the CXCR4 chemokine receptor and its ligand CXCL12 plays a major role in chemotaxis and adhesion of cells, and 
secretion of growth factors. In recent years, research has shown an association between CXCL12/CXCR4 signalling and cancer progres-
sion [81, 82]. This interaction is said to influence the invasive phenotype of pancreatic cancer for example. 

In 2012, a CXCR4 small molecule antagonist (NSC56612), structurally resembling CQ and HCQ, was identified through in silico model-
ling of this receptor [82]. Next, CQ and HCQ were tested via in vitro assays, in which they were found to suppress pancreatic cancer cell 
proliferation [82, 83]. Mechanistic studies have shown that CQ, at least, partially inhibits CXCL12/CXCR4 signalling, as demonstrated 
via reduced phosphorylation of the extracellular signal-regulated kinase (ERK) and the signal transducer and activator of transcription 3 
(STAT3). Interestingly, CQ and HCQ can induce CXCR4 internalisation in cancer stem cells, making these cells less sensitive to CXCL12 
signals [83]. 

Furthermore, a study in a pancreatic cancer patient-derived xenograft model showed that CQ specifically targets highly aggressive cancer 
stem cells through inhibition of their self-renewal process. Thus, CQ could be useful to block cancer stem cell-metastasis and may be com-
bined with other anti-cancer agents (e.g. gemcitabine) that target the bulk of the tumour [83].

Interference with the p53 pathway

The tumour suppressor protein p53 plays an essential role in maintaining an error-free genome and inducing cell death in case the damage 
is irretrievable. Therefore, it is a key protein in the prevention of tumour development [84]. 

Both in vitro and in vivo research has indicated that CQ can stabilise the p53 protein and activate the p53-dependent transcription of pro-
apoptotic genes [17, 23, 24, 72, 84, 85]. Several hypotheses have been proposed to explain the underlying mechanism, but there is no 
definite answer yet. One of these hypotheses is that CQ intercalates in DNA, which leads to structural changes and thus induction of p53 
[17, 85]. Moreover, the p53 activation by CQ might be mediated by the ataxia telangiectasia mutated protein, dependent on the cell type 
[17, 23, 24]

There is also some discussion about the relationship between the p53 status and the effects of autophagy inhibition on cancer develop-
ment. Several studies report an accelerated tumour development when autophagy is inhibited in mice without p53 [35, 86, 87], but Yang 
et al [88] showed that that inhibition of autophagy could still have beneficial effect in p53 mutant tumours. Other studies confirmed that CQ 
exerts anti-cancer effects independent of the p53 pathway and the p53 status [88–90]. Synergy between the p53-dependent and -indepen-
dent mechanisms of CQ is likely [17].
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Recently, a p53-dependent mechanism was reported in which CQ induces tumour suppressor protein Par-4 secretion, triggering paracrine 
apoptosis of cancer cells and inhibition of tumour metastasis. This mechanism involves the CQ-dependent activation of p53 and the sub-
sequent induction of Rab8b, which is necessary for transport of vesicles of Par-4 to the plasma membrane [91].

Moreover, CQ might prevent degradation of a p53-related protein, called Bcl homology-3-only protein p53 upregulated modulator of apop-
tosis (PUMA), as shown in mice studies. CQ increased the levels of PUMA, without affecting p53 in these studies [20, 92]. 

Other potential mechanisms of action

Additional mechanisms have been suggested, but they have not been studied to the same extent and will only be briefly described here.

In recent years, it has become clear that glutaminolysis plays an important role in metabolic processes associated with cancer cell prolif-
eration and survival. Therefore, targeting glutaminolysis could provide novel approaches to improve cancer treatment [93]. It was shown 
that CQ affects glutamate dehydrogenase activity [94–96], which could be a potential mechanism of action in anti-cancer treatment. The 
hypothesis of inhibiting metabolic processes using metformin and CQ is currently being tested in one clinical trial with patients with isoci-
trate dehydrogenase 1 and 2 (IDH1/2)-mutated chondrosarcoma, glioma and intrahepatic cholangiocarcinoma [97].

CQ and HCQ can activate caspase-3 and modulate the Bcl-2/Bax ratio inducing apoptosis in CLL, B-cell CLL and glioblastoma cells [17, 89, 
98–100]. CQ-mediated cell-cycle-arrest and apoptosis was observed in breast cancer cells and was associated with a decrease in protein 
levels/activity of polo-like kinase 1 (Plk-1), ERK1/2 Akt and cell division cycle 25C (CDC25C). The same study described induction of cas-
pase-3-mediated spindle abnormalities and down regulation of the mitochondrial transmembrane potential by CQ [101]. A decreased lung 
cancer cell growth after low CQ concentrations was ascribed to an increased lysosomal volume and a phosphatidylcholine-specific phos-
pholipase C involvement (PC-PLC). Higher CQ concentrations still induce apoptosis and necrosis, but likely via different processes [102].

Moreover, HCQ might affect acetylation status in the N-terminal lysines of histones H3 and H4, thus modulating cell growth and differentia-
tion, as shown in human breast cancer cells [103]. 

In addition, CQ might directly affect Hedgehog signalling. Under normal conditions, this is a quiescent pathway, but activation can cause 
tumorigenesis and maintains cancer stem cells. Anti-cancer treatment options targeting this specific pathway have been explored, but 
this has yielded little results so far [104]. One study suggested that CQ might modulate protein levels of the Hedgehog signalling pathway 
(smoothened, patched and GLI1 proteins) [83]. 

CQ can inhibit hypoxia-stimulated metastasis via modulation of hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor 
(VEGF), and epithelial mesenchymal transition (EMT) as shown in a cholangiocarcinoma cell line [105].

In triple-negative breast cancer, CQ was shown to eliminate cancer stem cells through reduction of the expression of Janus-activated 
kinase 2 and DNA methyl transferase 1 [106] or through induction of mitochondrial dysfunction, subsequently causing oxidative DNA dam-
age and impaired repair of double-stranded DNA breaks [107].

Of note, various studies showed growth inhibition of melanoma cells after CQ administration, but this inhibition was more pronounced in 
pigmented melanoma, which could be ascribed to CQ’s high affinity for melanin [108]. There is also some contradictory evidence about a 
potential link between Burkitt’s lymphoma incidence and CQ administration [109, 110]. 

Modulation of tumour micro-environment

Immunomodulation

An increasing level of research is addressing the essential role of the immune system in cancer development. Activating the immune 
system against cancer cells is becoming a promising therapeutic approach [111], as immune cells have the ability to detect and destroy 
malignant cells [66]. 
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Interestingly, autophagy and lysosomal function have been found to be involved in both innate and adaptive immunity [66]. Therefore, 
inhibitors of these processes such as CQ and HCQ could potentially modulate the immune system and subsequently influence tumour 
development. However, lysosomal function and autophagy have a dual role in the anti-tumour immune response. Activation of these pro-
cesses could both activate and impair the immune response, dependent on the circumstances [66]. In addition, autophagy and lysosomal 
function affect the response of tumour cells to the immune system as well. For example, tumour cell autophagy can generate mediators 
that provoke an immune response via modulation of the tumour cell secretome and surface proteome, but it may also help tumour cells to 
escape the immune system [64, 66].

In general, the interaction between cancer cells and the immune system is complex and further research is warranted to determine when 
CQ or HCQ administration can lead to beneficial effects in the context of anti-tumour immunity [112]. This is particularly important if CQ or 
HCQ would be considered for use in combination with immunomodulation anti-cancer therapies.

Normalisation of the tumour vasculature

The tumour vasculature, responsible for supplying the tumour with nutrients and oxygen, is an important component in the tumour micro-
environment and plays an essential role in tumour cell metastasis [113]. A first therapeutic approach is to destroy blood vessels in order to 
block the nutrient and oxygen supply to the tumour. However, accumulating evidence suggests that improving the highly abnormal tumour 
vessel structure, also called vessel normalisation, is preferred over anti-angiogenic therapy. The benefits of vessel normalisation include 
a decrease in tumour hypoxia, reduced cancer cell intravasation and metastasis, and an increase in chemotherapeutic drug delivery and 
response [114, 115]. 

A recent study showed that CQ normalises tumour vessels, independent of its autophagy inhibitory effect, through reduction of vessel den-
sity and improvement of cell alignment and formation of tight junctions. At the molecular level, CQ alters endosomal Notch1 trafficking and 
signalling in endothelial cells, hereby increasing the quiescent phenotype of the endothelial cells [26, 116]. Of note, systemic CQ adminis-
tration has also been shown to reduce the vascular toxicity of the intratumorally administered, anti-tumour agent Transferrin-CRM107 in in 
vivo glioma models [117]. 

Disruption of the CAF—cancer cell interplay

The final interplay between the tumour and its microenvironment that may be influenced by CQ involves CAFs [118]. Glutamine and caveo-
lin-1 are key players in this autophagy-mediated interplay, in which CAFs and tumour cells support each other through glutamine produc-
tion/secretion and autophagy stimulation. Interestingly, this interplay can be uncoupled through the autophagy inhibitory or lysosomotropic 
activity of CQ, but the exact mechanism should still be clarified [119, 120]. 

Synergism with approved anti-cancer drugs

Existing anti-cancer therapies often induce pro-survival autophagy in cancer cells, which is associated with therapeutic resistance. Because 
of their ability to inhibit autophagy, CQ and HCQ are able to sensitise tumour cells to chemotherapy and radiation. Therefore, these drugs 
are often tested in (pre)clinical research in combination with other anti-cancer therapies. Though, some caution is advised when concomi-
tantly using these antimalarial drugs with other anti-cancer agents because autophagy can also be inhibited in normal cells, which causes 
unwanted toxicity (e.g. nephrotoxicity) [121]. 

CQ-mediated sensitisation to anti-cancer therapy has also been ascribed to autophagy-independent mechanisms. As mentioned earlier, 
chemotherapeutics can reach the tumour site more easily after tumour vessel normalisation [26, 116]. Moreover, CQ can prevent the 
entrapment of protonated chemotherapeutic drugs by buffering the extracellular tumour environment and intracellular acidic spaces [112]. 
For example, CQ can reduce the endosomal sequestration of certain drugs by raising the endosomal pH and, thus, increase their efficacy 
(e.g. doxorubicin, daunorubicin and mitoxantrone) [122–124]. Vezmar et al [125, 126] suggested that CQ influences multidrug resistance 
protein-mediated doxorubicin resistance by binding the multidrug resistance protein.
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Prediction of efficacy in individual patients

Autophagy dependency and metabolic stress levels of tumour cells vary widely depending on the tumour type and progression stage. 
Therefore, reliable measurements to predict tumour sensitivity to autophagy inhibition would be extremely useful for patient selection in 
clinical practice [67]. As mentioned earlier, the status of tumour suppressor p53 can affect CQ efficacy, but other CQ sensitivity indicators 
have been identified as well. 

First, EGFR overexpressing tumour cells, high levels of STAT3 activity, loss of caveolin-1, Akt- and Myc- driven tumour cells, and arginino-
succinate synthetase enzyme deficiency are all associated with a high autophagy dependency and are therefore more sensitive to CQ 
administration [16, 28, 119, 127–129]. Next, there is still discussion about the effect of the oncogenic BRAF (V600E) mutation on autophagy 
dependency of tumour cells [47, 130, 131]. In addition, evidence has shown that autophagy is induced by the tumour suppressor alterna-
tive reading frame, but it should still be clarified whether this is cytotoxic or protective autophagy before we can determine whether CQ 
administration would exert beneficial effects [132]. Moreover, oncogenic Ras, and especially Kras, mutation has also been suggested as an 
indicator of autophagy dependency and susceptibility to CQ [27, 133], but two other studies have reported that this mutation is not a reliable 
indicator [134, 135]. As mentioned earlier, however, HCQ has been shown to promote tumour growth in Ras-driven pancreatic tumours 
developing without p53 (KrasG12D/+ p53–/–) [35, 36]. Cells with the IDH1/2 mutations are metabolically vulnerable to CQ treatment, because 
they depend on glutaminolysis and autophagy, which is inhibited by CQ [97].

Autophagy dependency is higher in case of nutritional stress, as shown in mesothelioma cells [128], and neuroendocrine lung tumour cells 
are more sensitive to autophagy inhibition than non-neuroendocrine lung tumour cells [136].

Finally, an in vitro study in four human glioma cell lines observed that higher steady-state mitochondrial membrane potential values, repre-
senting mitochondrial stability, can predict cancer cell resistance to CQ treatment [137].

Our take

The final goal of this literature review was to inform further research and trials on repurposing CQ and HCQ as anti-cancer agents, as done 
previously for other agents [138]. In addition, the ideal dose, route of administration, and therapeutic schedule that should be applied in 
anti-cancer therapy was explored. Finally, the potential difference in efficacy and toxicity between CQ and HCQ has been investigated. 

Efficacy of CQ and HCQ in anti-cancer therapy

The vast majority of preclinical studies on the effect of CQ monotherapy in cancer have reported a positive therapeutic effect, but the study 
parameters, doses, animal models and tumour types differ strongly between studies, complicating the interpretation of the results. Preclini-
cal studies investigating the effect of HCQ in cancer are limited. Therefore, follow-up in vivo studies are warranted. A risk of publication bias 
exists so we cannot guarantee that all negative results have been reported.

Combination therapy with CQ or HCQ and existing anti-cancer therapies has been extensively studied in preclinical research, both in vitro 
and in vivo. The majority of these studies have reported an improved therapeutic efficacy as compared with monotherapy with existing anti-
cancer drugs. Most studies hypothesise that CQ and HCQ could increase the efficacy of other anti-cancer drugs by blocking pro-survival 
autophagy. Because not all studies measured autophagy levels in vivo, it is difficult to determine to what extent the other proposed mecha-
nisms play a role. Table 2 is limited to studies that tested CQ or HCQ in combination with conventional anti-cancer agents in vivo, but there 
are many other combinations that have only been tested in vitro.

Finally, multiple clinical trials have investigated, or are going to investigate, the use of CQ and HCQ in different cancer types, always in 
combination with other anti-cancer drugs. The availability of clinical results is limited now, as most trials are still recruiting or ongoing, 
and those that have been completed focused primarily on safety and tolerability of CQ and HCQ in cancer. In short, these drugs have 
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been found safe and tolerable in all completed studies and the anti-cancer effect of both compounds is promising. However, as many 
clinical trials are still ongoing, a definite conclusion on the repurposing intent of CQ and HCQ in anti-cancer therapy is pending. Still, 
data from first clinical trials and additional preclinical data point to a potential positive implementation of these drugs in anti-cancer 
treatment.

Doses, route of administration and therapeutic schedule

In preclinical experiments, varying CQ and HCQ doses have been used, but most of the applied doses can be extrapolated to human 
doses. However, whether the dose to achieve autophagy inhibition, induction of apoptosis and tumour normalisation is achievable in 
humans remains an open question that would require collecting additional data in humans [112]. Clinical trials have shown that daily 
doses between 150 and 500 mg for CQ and daily doses between 400 and 1200 mg for HCQ are safe and well tolerated, but two studies 
identified 600-mg HCQ daily as the MTD. HCQ is often administered twice daily to limit plasma fluctuations and toxicity. Of note, Pascolo 
recommended 10 mg/kg as the maximum realistic clinical dosage of CQ, but the recommended dose and MTD of CQ and HCQ might vary 
dependent on the tumour type and the concomitantly administered anti-cancer treatments.

Pascolo also suggests that timing of administration is of great importance. CQ must be administered after chemotherapy and not before, 
which is supported by data in a mouse model of colorectal cancer treated with gemcitabine [139].

CQ or HCQ?

HCQ has been reported to have less side effects than CQ (e.g. less risk of retinal toxicity) [9, 140, 141], so it can be administered in higher 
doses for human use. Currently it is not clear yet whether there are differences in anti-cancer treatment efficacy between CQ and HCQ. The 
clinical trials that have already been completed suggest that CQ might be more efficacious than HCQ. However, no comparative clinical trial 
has been set up to confirm this hypothesis. 

Yet, based on chemical structure, the altered safety and efficacy can be ascribed to the additional hydroxyl group in HCQ, causing pharma-
cokinetic differences that are essential for the working mechanism of the drugs (e.g. pKa alteration leading to differences in biprotonation 
and distribution) [14, 140]. 

Next steps

More than 30 clinical trials are currently ongoing (Feb 2017). The results of these trials may indicate which tumour types are most sensitive 
to CQ and HCQ treatment, and which combination therapies can be beneficial. Additional preclinical studies could further characterise the 
most relevant mechanisms of action and their individual importance in anti-cancer therapy. Finally, CQ analogues and other more specific 
autophagy inhibitory agents are also under investigation for the treatment of cancer patients (e.g. Lys05) [142–146].

Conclusion

CQ and HCQ have been studied in multiple preclinical cancer models and have demonstrated activity on several cancer-supporting path-
ways and in combination with a broad range of other therapies. Our review has highlighted the interesting multi-faceted actions of CQ and 
HCQ against cancer, making these drugs attractive for this complex disease [147, 148].

Even though it is too soon to make definite conclusions about the overall effect of CQ and HCQ in anti-cancer treatments, the clinical 
data already available are encouraging to further explore their potential as anti-cancer agents, with a preference for CQ. Until now, most 
clinical evidence was found in patients with glioblastoma and brain metastases and in patients with BRAF mutations, but some promising 
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effects have been reported in patients with lung cancer, multiple myeloma and sarcoma as well. Although the side effects of CQ and HCQ 
are minor in comparison with conventional anti-cancer therapy, the possibility of retinal toxicity in trials planning long-term CQ and HCQ 
exposure requires the implementation of ophthalmologic monitoring. More than 30 clinical studies are currently evaluating HCQ and CQ 
in different cancers, most of them with the rationale to increase the efficacy of other anti-cancer therapies through inhibition of treatment-
induced autophagy. The first clinical trials with CQ and HCQ have focused on the toxicity of different CQ doses in multiple populations and 
new trials should now focus on rigorous evaluation of efficacy.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author contributions

Primary authors: Ciska Verbaanderd and Gauthier Bouche. Contributing authors: Hannelore Maes, Marco Schaaf, Vikas P Sukhatme, Pan 
Pantziarka, Vidula Sukhatme and Patrizia Agostinis. All authors read and approved the final manuscript.

References

 1. Ben-Zvi I et al (2012) Hydroxychloroquine: from malaria to autoimmunity Clinical Reviews in Allergy and Immunology 42 145–153 
https://doi.org/10.1007/s12016-010-8243-x

 2. Thomé R et al (2013) Chloroquine: modes of action of an undervalued drug Immunology Letters 153(1–2) 50–57 https://doi.
org/10.1016/j.imlet.2013.07.004 PMID: 23891850

 3. Anon (n.d.) Avloclor tablets - summary of product characteristics (SPC) - (eMC) [online] Available from: https://www.medicines.
org.uk/emc/medicine/2272 (Accessed 15 January 2016)

 4. Anon (n.d.) Plaquenil 200mg film-coated tablets - summary of product characteristics (SPC) - (eMC) [online] Available from: 
https://www.medicines.org.uk/emc/medicine/6977 (Accessed 15 January 2016)

 5. Lee S-J et al (2011) The role of antimalarial agents in the treatment of SLE and lupus nephritis Nature Reviews Nephrology 7(12) 
718–729 https://doi.org/10.1038/nrneph.2011.150 PMID: 22009248

 6. Dubois EL (1978) Antimalarials in the management of discoid and systemic lupus erythematosus Seminars in Arthritis and 
Rheumatism 8(1) 33–51 https://doi.org/10.1016/0049-0172(78)90033-1 PMID: 358397

 7. Olson NY and Lindsley CB (1989) Adjunctive use of hydroxychloroquine in childhood dermatomyositis The Journal of Rheuma-
tology 16(12) 1545–1547 PMID: 2483176

 8. Costedoat-Chalumeau N et al (2007) Cardiomyopathy related to antimalarial therapy with illustrative case report Cardiology 
107(2) 73–80 https://doi.org/10.1159/000094079

 9. Browning DJ (2014) Pharmacology of chloroquine and hydroxychloroquine Hydroxychloroquine and Chloroquine Retinopathy 
35–63 https://doi.org/10.1007/978-1-4939-0597-3_2

 10. Costedoat-Chalumeau N et al (2015) A critical review of the effects of hydroxychloroquine and chloroquine on the eye Clinical 
Reviews in Allergy & Immunology 49(3) 317–326 https://doi.org/10.1007/s12016-015-8469-8

https://doi.org/10.1007/s12016-010-8243-x
https://doi.org/10.1016/j.imlet.2013.07.004
https://doi.org/10.1016/j.imlet.2013.07.004
http://www.ncbi.nlm.nih.gov/pubmed/23891850
https://www.medicines.org.uk/emc/medicine/2272 
https://www.medicines.org.uk/emc/medicine/2272 
https://www.medicines.org.uk/emc/medicine/6977 
https://doi.org/10.1038/nrneph.2011.150
http://www.ncbi.nlm.nih.gov/pubmed/22009248
https://doi.org/10.1016/0049-0172(78)90033-1
http://www.ncbi.nlm.nih.gov/pubmed/358397
http://www.ncbi.nlm.nih.gov/pubmed/2483176
https://doi.org/10.1159/000094079
https://doi.org/10.1007/978-1-4939-0597-3_2
https://doi.org/10.1007/s12016-015-8469-8


Cl
in

ic
al

 S
tu

dy

 25 www.ecancer.org

ecancer 2017, 11:781

 11. Nagaratnam N et al (1978) Aplasia and leukaemia following chloroquine therapy Postgraduate Medical Journal 54(628) 108–112 
https://doi.org/10.1136/pgmj.54.628.108 PMID: 273209 PMCID: 2425073

 12. Goyal V and Bordia A (1995) The hypoglycemic effect of chloroquine The Journal of the Association of Physicians of India 43(1) 
17–18 PMID: 9282631

 13. Marmor MF et al (2016) Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision) 
Ophthalmology 123(6) 1386–1394 https://doi.org/10.1016/j.ophtha.2016.01.058 PMID: 26992838

 14. Warhurst DC et al (2003) Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant plasmodium 
falciparum, in agreement with its physicochemical properties The Journal of Antimicrobial Chemotherapy 52(2) 188–193 https://
doi.org/10.1093/jac/dkg319 PMID: 12837731

 15. Day RO et al (eds.) (2005) Antirheumatic Therapy: Actions and Outcomes Birkhäuser: Basel

 16. Jutten B et al (2013) EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival Radiotherapy 
and Oncology 108(3) 479–483 https://doi.org/10.1016/j.radonc.2013.06.033 PMID: 23891088

 17. Kim EL et al (2010) Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells Neuro-Oncology 12(4) 
389–400 https://doi.org/10.1093/neuonc/nop046 PMID: 20308316 PMCID: 2940600

 18. Song YJ et al (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-
deprived tumor microenvironment Cancer Letters 339(1) 70–81 https://doi.org/10.1016/j.canlet.2013.07.021 PMID: 23879969

 19. Hu T et al (2016) Chloroquine inhibits hepatocellular carcinoma cell growth in vitro and in vivo Oncology Reports 35(1) 43–49 
https://doi.org/10.3892/or.2015.4380 PMCID: 4699623

 20. Lakhter AJ et al (2013) Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain-mediated PUMA degrada-
tion The Journal of Investigative Dermatology 133(9) 2247–2254 https://doi.org/10.1038/jid.2013.56 PMID: 23370537 PMCID: 3675185

 21. Zheng Y et al (2009) Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis 
Cancer Investigation 27(3) 286–292 https://doi.org/10.1080/07357900802427927 PMID: 19194831

 22. Jiang PD et al (2010) Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer 
Biomedicine and Pharmacotherapy 64(9) 609–614 https://doi.org/10.1016/j.biopha.2010.06.004 PMID: 20888174

 23. Loehberg CR et al (2007) Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to 
mammary carcinogenesis Cancer Research 67(24) 12026–12033 https://doi.org/10.1158/0008-5472.CAN-07-3058 PMID: 18089834

 24. Maclean KH et al (2008) Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse 
models of lymphomagenesis The Journal of Clinical Investigation 118(1) 79–88 https://doi.org/10.1172/JCI33700

 25. Sun K et al (2013) Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma develop-
ment in rats Cell Death & Disease 4 e501 https://doi.org/10.1038/cddis.2013.35

 26. Maes H et al (2014) Tumor vessel normalization by chloroquine independent of autophagy Cancer Cell 26(2) 190–206 https://
doi.org/10.1016/j.ccr.2014.06.025 PMID: 25117709

 27. Yang S et al (2011) Pancreatic cancers require autophagy for tumor growth Genes and Development 25(7) 717–729 https://doi.
org/10.1101/gad.2016111 PMID: 21406549 PMCID: 3070934

 28. Maycotte P et al (2015) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibi-
tion can be efficacious Cancer Research 74(9) 2579–2590 https://doi.org/10.1158/0008-5472.CAN-13-3470

 29. Hiraki K and Kimura I (1963) Studies on the treatment of malignant tumors with fibroblast-inhibiting agent. II. Effects of chlo-
roquine on animal tumors Acta Medicinae Okayama 17 239–252 PMID: 14164121

https://doi.org/10.1136/pgmj.54.628.108
http://www.ncbi.nlm.nih.gov/pubmed/273209
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425073
http://www.ncbi.nlm.nih.gov/pubmed/9282631
https://doi.org/10.1016/j.ophtha.2016.01.058
http://www.ncbi.nlm.nih.gov/pubmed/26992838
https://doi.org/10.1093/jac/dkg319
https://doi.org/10.1093/jac/dkg319
http://www.ncbi.nlm.nih.gov/pubmed/12837731
https://doi.org/10.1016/j.radonc.2013.06.033
http://www.ncbi.nlm.nih.gov/pubmed/23891088
https://doi.org/10.1093/neuonc/nop046
http://www.ncbi.nlm.nih.gov/pubmed/20308316
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940600
https://doi.org/10.1016/j.canlet.2013.07.021
http://www.ncbi.nlm.nih.gov/pubmed/23879969
https://doi.org/10.3892/or.2015.4380
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699623
https://doi.org/10.1038/jid.2013.56
http://www.ncbi.nlm.nih.gov/pubmed/23370537
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675185
https://doi.org/10.1080/07357900802427927
http://www.ncbi.nlm.nih.gov/pubmed/19194831
https://doi.org/10.1016/j.biopha.2010.06.004
http://www.ncbi.nlm.nih.gov/pubmed/20888174
https://doi.org/10.1158/0008-5472.CAN-07-3058
http://www.ncbi.nlm.nih.gov/pubmed/18089834
https://doi.org/10.1172/JCI33700
https://doi.org/10.1038/cddis.2013.35
https://doi.org/10.1016/j.ccr.2014.06.025
https://doi.org/10.1016/j.ccr.2014.06.025
http://www.ncbi.nlm.nih.gov/pubmed/25117709
https://doi.org/10.1101/gad.2016111
https://doi.org/10.1101/gad.2016111
http://www.ncbi.nlm.nih.gov/pubmed/21406549
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070934
https://doi.org/10.1158/0008-5472.CAN-13-3470
http://www.ncbi.nlm.nih.gov/pubmed/14164121


Cl
in

ic
al

 S
tu

dy

 26 www.ecancer.org

ecancer 2017, 11:781

 30. Pellegrini P et al (2014) Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for 
cancer therapies Autophagy 10(4) 562–571 https://doi.org/10.4161/auto.27901 PMID: 24492472 PMCID: 3984580

 31. Rouschop KMA et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of 
the autophagy genes MAP1LC3B and ATG5 The Journal of Clinical Investigation 120(1) 127–141 https://doi.org/10.1172/JCI40027 
PMCID: 2798689

 32. Dutta P et al (1994) Enhanced growth of mammary adenocarcinoma in rats by chloroquine and quinacrine Cancer Letters 76 
113–119 https://doi.org/10.1016/0304-3835(94)90386-7 PMID: 8149339

 33. Yamaguchi I et al (1966) Influence of host conditions upon the growth pattern of transplanted tumors Tohoku Journal of Experi-
mental Medicine 90 291–301 https://doi.org/10.1620/tjem.90.291 PMID: 5971610

 34. Chi C et al (2010) Disruption of lysosome function promotes tumor growth and metastasis in drosophila The Journal of Biologi-
cal Chemistry 285(28) 21817–21823 https://doi.org/10.1074/jbc.M110.131714 PMID: 20418542 PMCID: 2898421

 35. Rosenfeldt MT et al (2013) P53 status determines the role of autophagy in pancreatic tumour development Nature 504(7479) 
296–300 https://doi.org/10.1038/nature12865 PMID: 24305049

 36. Jonckheere N et al (2014) Of autophagy and in vivo pancreatic carcinogenesis: the p53 status matters! Clinics and Research in 
Hepatology and Gastroenterology 38(4) 423–425 https://doi.org/10.1016/j.clinre.2014.04.009 PMID: 24939064

 37. Keith CT et al (2005) Multicomponent therapeutics for networked systems Nature Reviews Drug Discovery 4(1) 71–78 https://doi.
org/10.1038/nrd1609 PMID: 15688074

 38. Briceño E et al (2003) Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine Neurosurgical Focus 
14(2) e3 https://doi.org/10.3171/foc.2003.14.2.4

 39. Sotelo J et al (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, 
placebo-controlled trial Annals of Internal Medicine 144 337–343 https://doi.org/10.7326/0003-4819-144-5-200603070-00008 PMID: 
16520474

 40. Gilbert MR (2006) New treatments for malignant gliomas: careful evaluation and cautious optimism required Annals of Iinternal 
Medicine 144(5) 371–373 https://doi.org/10.7326/0003-4819-144-5-200603070-00015

 41. Briceño E et al (2007) Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme 
Surgical Neurology 67(4) 388–391 https://doi.org/10.1016/j.surneu.2006.08.080 PMID: 17350410

 42. Bilger A et al (2014) FET-PET-based reirradiation and chloroquine in patients with recurrent glioblastoma: first tolerability and 
feasibility results Strahlentherapie und Onkologie 190(10) 957–961 https://doi.org/10.1007/s00066-014-0693-2 PMID: 24928248

 43. Rojas-Puentes LL et al (2013) Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with con-
comitant chloroquine for brain metastases Radiation Oncology (London, England) 8 209 https://doi.org/10.1186/1748-717X-8-209

 44. Eldredge HB et al (2013) Concurrent whole brain radiotherapy and short-course chloroquine in patients with brain metasta-
ses: a pilot trial Journal of Radiation Oncology 2(3) 315–321 https://doi.org/10.1007/s13566-013-0111-x

 45. Munshi A et al (2008) Unusual intensification of skin reactions by chloroquine use during breast radiotherapy Acta Oncologica 
(Stockholm, Sweden) 47(2) 318–319 https://doi.org/10.1080/02841860701491058

 46. Rustogi A et al (2006) Unexpected skin reaction induced by radiotherapy after chloroquine use The Lancet. Oncology 7(7) 
608–609 https://doi.org/10.1016/S1470-2045(06)70763-X PMID: 16814214

 47. Levy JMM et al (2014) Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors Cancer Discovery 4(7) 
773–780 https://doi.org/10.1158/2159-8290.CD-14-0049 PMID: 24823863 PMCID: 4090283

https://doi.org/10.4161/auto.27901
http://www.ncbi.nlm.nih.gov/pubmed/24492472
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984580
https://doi.org/10.1172/JCI40027
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798689
https://doi.org/10.1016/0304-3835(94)90386-7
http://www.ncbi.nlm.nih.gov/pubmed/8149339
https://doi.org/10.1620/tjem.90.291
http://www.ncbi.nlm.nih.gov/pubmed/5971610
https://doi.org/10.1074/jbc.M110.131714
http://www.ncbi.nlm.nih.gov/pubmed/20418542
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898421
https://doi.org/10.1038/nature12865
http://www.ncbi.nlm.nih.gov/pubmed/24305049
https://doi.org/10.1016/j.clinre.2014.04.009
http://www.ncbi.nlm.nih.gov/pubmed/24939064
https://doi.org/10.1038/nrd1609
https://doi.org/10.1038/nrd1609
http://www.ncbi.nlm.nih.gov/pubmed/15688074
https://doi.org/10.3171/foc.2003.14.2.4
https://doi.org/10.7326/0003-4819-144-5-200603070-00008
http://www.ncbi.nlm.nih.gov/pubmed/16520474
https://doi.org/10.7326/0003-4819-144-5-200603070-00015
https://doi.org/10.1016/j.surneu.2006.08.080
http://www.ncbi.nlm.nih.gov/pubmed/17350410
https://doi.org/10.1007/s00066-014-0693-2
http://www.ncbi.nlm.nih.gov/pubmed/24928248
https://doi.org/10.1186/1748-717X-8-209
https://doi.org/10.1007/s13566-013-0111-x
https://doi.org/10.1080/02841860701491058
https://doi.org/10.1016/S1470-2045(06)70763-X
http://www.ncbi.nlm.nih.gov/pubmed/16814214
https://doi.org/10.1158/2159-8290.CD-14-0049
http://www.ncbi.nlm.nih.gov/pubmed/24823863
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090283


Cl
in

ic
al

 S
tu

dy

 27 www.ecancer.org

ecancer 2017, 11:781

 48. Mulcahy Levy JM et al (2017) Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain 
tumors eLife 6 358–367 https://doi.org/10.7554/eLife.19671

 49. Montanari F et al (2014) A phase II trial of chloroquine in combination with bortezomib and cyclophosphamide in patients with 
relapsed and refractory multiple myeloma Blood 124(21) 5775

 50. Kyle RA et al (1975) Multiple myeloma resistant to melphalan (NSC-8806) treated with cyclophosphamide (NSC-26271), pred-
nisone (NSC-10023), and chloroquine (NSC-187208) Cancer Chemotherapy Reports. Part 1 59(3) 557–562 PMID: 1203882

 51. Rangwala R et al (2014) Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus 
in patients with advanced solid tumors and melanoma Autophagy 10(8) 1391–1402 https://doi.org/10.4161/auto.29119 PMID: 
24991838 PMCID: 4203516

 52. Rangwala R et al (2014) Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid 
tumors and melanoma Autophagy 10(8) 1369–1379 https://doi.org/10.4161/auto.29118 PMID: 24991839 PMCID: 4203514

 53. Mahalingam D et al (2014) Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and phar-
macodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced 
solid tumors Autophagy 10(8) 1403–1414 https://doi.org/10.4161/auto.29231 PMID: 24991835 PMCID: 4203517

 54. Chi K-H et al (2015) Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment 
results in high salvage rates for refractory metastatic solid tumors: a pilot safety and effectiveness analysis in a small patient 
cohort Oncotarget 6(18) 16735–16745 https://doi.org/10.18632/oncotarget.3793 PMID: 25944689 PMCID: 4599303

 55. Rosenfeld MR et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and 
adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme Autophagy 10(8) 1359–1368 https://doi.
org/10.4161/auto.28984 PMID: 24991840 PMCID: 4203513

 56. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma The New England Journal of 
Medicine 352(10) 987–996 https://doi.org/10.1056/NEJMoa043330 PMID: 15758009

 57. Goldberg SB et al (2012) A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer Journal 
of Thoracic Oncology 7(10) 1602–1608 https://doi.org/10.1097/JTO.0b013e318262de4a PMID: 22878749 PMCID: 3791327

 58. Leung L-SB et al (2015) Rapid onset of retinal toxicity from high-dose hydroxychloroquine given for cancer therapy American 
Journal of Ophthalmology 160(4) 799.e1–805.e1 https://doi.org/10.1016/j.ajo.2015.07.012

 59. Vogl DT et al (2014) Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib 
in patients with relapsed/refractory myeloma Autophagy 10(8) 1380–1390 https://doi.org/10.4161/auto.29264 PMID: 24991834 
PMCID: 4203515

 60. Boone BA et al (2015) Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine 
in patients with pancreatic adenocarcinoma Annals of Surgical Oncology 22(13) 4402–4410 https://doi.org/10.1245/s10434-015-
4566-4 PMID: 25905586 PMCID: 4663459

 61. Wolpin BM et al (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients 
with metastatic pancreatic adenocarcinoma The Oncologist 19(6) 637–638 https://doi.org/10.1634/theoncologist.2014-0086 PMID: 
24821822 PMCID: 4041680

 62. Chi M-S et al (2015) Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients Oncotarget 6(30) 
29808–29817 https://doi.org/10.18632/oncotarget.5060 PMID: 26375670 PMCID: 4745764

 63. Glick D et al (2010) Autophagy: cellular and molecular mechanisms The Journal of Pathology 221(1) 3–12 https://doi.org/10.1002/
path.2697 PMID: 20225336 PMCID: 2990190

https://doi.org/10.7554/eLife.19671
http://www.ncbi.nlm.nih.gov/pubmed/1203882
https://doi.org/10.4161/auto.29119
http://www.ncbi.nlm.nih.gov/pubmed/24991838
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203516
https://doi.org/10.4161/auto.29118
http://www.ncbi.nlm.nih.gov/pubmed/24991839
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203514
https://doi.org/10.4161/auto.29231
http://www.ncbi.nlm.nih.gov/pubmed/24991835
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203517
https://doi.org/10.18632/oncotarget.3793
http://www.ncbi.nlm.nih.gov/pubmed/25944689
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599303
https://doi.org/10.4161/auto.28984
https://doi.org/10.4161/auto.28984
http://www.ncbi.nlm.nih.gov/pubmed/24991840
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203513
https://doi.org/10.1056/NEJMoa043330
http://www.ncbi.nlm.nih.gov/pubmed/15758009
https://doi.org/10.1097/JTO.0b013e318262de4a
http://www.ncbi.nlm.nih.gov/pubmed/22878749
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791327
https://doi.org/10.1016/j.ajo.2015.07.012
https://doi.org/10.4161/auto.29264
http://www.ncbi.nlm.nih.gov/pubmed/24991834
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203515
https://doi.org/10.1245/s10434-015-4566-4
https://doi.org/10.1245/s10434-015-4566-4
http://www.ncbi.nlm.nih.gov/pubmed/25905586
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663459
https://doi.org/10.1634/theoncologist.2014-0086
http://www.ncbi.nlm.nih.gov/pubmed/24821822
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041680
https://doi.org/10.18632/oncotarget.5060
http://www.ncbi.nlm.nih.gov/pubmed/26375670
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745764
https://doi.org/10.1002/path.2697
https://doi.org/10.1002/path.2697
http://www.ncbi.nlm.nih.gov/pubmed/20225336
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990190


Cl
in

ic
al

 S
tu

dy

 28 www.ecancer.org

ecancer 2017, 11:781

 64. Sehgal A et al (2014) You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia Leukemia 29(3) 517–525 
https://doi.org/10.1038/leu.2014.349 PMID: 25541151 PMCID: 4825874

 65. Parzych KR and Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation Antioxidants & Redox 
Signaling 20(3) 460–473 https://doi.org/10.1089/ars.2013.5371

 66. Viry E et al (2014) Autophagy: an adaptive metabolic response to stress shaping the antitumor immunity Biochemical Pharma-
cology 92(1) 1–12 https://doi.org/10.1016/j.bcp.2014.07.006

 67. Cicchini M et al (2015) Molecular pathways: autophagy in cancer–a matter of timing and context Clinical Cancer Research 21(3) 
498–504 https://doi.org/10.1158/1078-0432.CCR-13-2438

 68. Cheong H (2015) Integrating autophagy and metabolism in cancer Archives of Pharmacal Research 38(3) 358–371 https://doi.
org/10.1007/s12272-015-0562-2 PMID: 25614051

 69. Janku F et al (2011) Autophagy as a target for anticancer therapy Nature Reviews Clinical Oncology 8(9) 528–539 https://doi.
org/10.1038/nrclinonc.2011.71 PMID: 21587219

 70. Rebecca VW and Amaravadi RK (2016) Emerging strategies to effectively target autophagy in cancer Oncogene 35(1) 1–11 
https://doi.org/10.1038/onc.2015.99 PMCID: 4838040

 71. Townsend KN et al (2012) Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immunity Immuno-
logical Reviews 249(1) 176–194 https://doi.org/10.1111/j.1600-065X.2012.01141.x PMID: 22889222

 72. Loehberg CR et al (2012) Akt and p53 are potential mediators of reduced mammary tumor growth by cloroquine and the mTOR 
inhibitor RAD001 Biochemical Pharmacology 83(4) 480–488 https://doi.org/10.1016/j.bcp.2011.11.022

 73. Zhang Y et al (2014) Functional expression of TLR9 in esophageal cancer Oncology Reports 31(5) 2298–2304. https://doi.
org/10.3892/or.2014.3095 PMID: 24647486

 74. Zhang Y et al (2015) Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor 
kappa B signaling pathway Molecular Medicine Reports 11(2) 1366–1371 https://doi.org/10.3892/mmr.2014.2839

 75. Väisänen MR et al (2013) Expression of toll-like receptor-9 is associated with poor progression-free survival in prostate can-
cer Oncology Letters 5(12) 1659–1663 PMID: 23761830 PMCID: 3678868

 76. Mohamed FE et al (2015) Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular 
carcinoma Liver International 35(3) 1063–1076 https://doi.org/10.1111/liv.12626

 77. Kuznik A et al (2011) Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines The Journal of 
Immunology 186(8) 4794–4804 https://doi.org/10.4049/jimmunol.1000702 PMID: 21398612

 78. Sandholm J et al (2014) Hypoxia regulates toll-like receptor-9 expression and invasive function in human brain cancer cells in 
vitro Oncology Letters 8 266–274 PMID: 24959259 PMCID: 4063648

 79. Tuomela J et al (2012) Low TLR9 expression defines an aggressive subtype of triple-negative breast cancer Breast Cancer 
Research and Treatment 135 481–493 https://doi.org/10.1007/s10549-012-2181-7 PMID: 22847512

 80. Tuomela J et al (2013) Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer Oncol 
ogy Letters 6 1665–1672 PMID: 24273604 PMCID: 3835157

 81. Sun X et al (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression Cancer Metastasis Reviews 29(4) 709–722 
https://doi.org/10.1007/s10555-010-9256-x PMID: 20839032 PMCID: 3175097

 82. Kim J et al (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic 
cancer cells PloS One 7(2) e31004 https://doi.org/10.1371/journal.pone.0031004 PMID: 22319600 PMCID: 3272047

https://doi.org/10.1038/leu.2014.349
http://www.ncbi.nlm.nih.gov/pubmed/25541151
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825874
https://doi.org/10.1089/ars.2013.5371
https://doi.org/10.1016/j.bcp.2014.07.006
https://doi.org/10.1158/1078-0432.CCR-13-2438
https://doi.org/10.1007/s12272-015-0562-2
https://doi.org/10.1007/s12272-015-0562-2
http://www.ncbi.nlm.nih.gov/pubmed/25614051
https://doi.org/10.1038/nrclinonc.2011.71
https://doi.org/10.1038/nrclinonc.2011.71
http://www.ncbi.nlm.nih.gov/pubmed/21587219
https://doi.org/10.1038/onc.2015.99
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838040
https://doi.org/10.1111/j.1600-065X.2012.01141.x
http://www.ncbi.nlm.nih.gov/pubmed/22889222
https://doi.org/10.1016/j.bcp.2011.11.022
https://doi.org/10.3892/or.2014.3095
https://doi.org/10.3892/or.2014.3095
http://www.ncbi.nlm.nih.gov/pubmed/24647486
https://doi.org/10.3892/mmr.2014.2839
http://www.ncbi.nlm.nih.gov/pubmed/23761830
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678868
https://doi.org/10.1111/liv.12626
https://doi.org/10.4049/jimmunol.1000702
http://www.ncbi.nlm.nih.gov/pubmed/21398612
http://www.ncbi.nlm.nih.gov/pubmed/24959259
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063648
https://doi.org/10.1007/s10549-012-2181-7
http://www.ncbi.nlm.nih.gov/pubmed/22847512
http://www.ncbi.nlm.nih.gov/pubmed/24273604
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835157
https://doi.org/10.1007/s10555-010-9256-x
http://www.ncbi.nlm.nih.gov/pubmed/20839032
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175097
https://doi.org/10.1371/journal.pone.0031004
http://www.ncbi.nlm.nih.gov/pubmed/22319600
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272047


Cl
in

ic
al

 S
tu

dy

 29 www.ecancer.org

ecancer 2017, 11:781

 83. Balic A et al (2014) Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling Molecu-
lar Cancer Therapeutics 13(7) 1758–1771 https://doi.org/10.1158/1535-7163.MCT-13-0948 PMID: 24785258

 84. Bieging KT et al (2014) Unravelling mechanisms of p53-mediated tumour suppression Nature Reviews Cancer 14(5) 359–370 
https://doi.org/10.1038/nrc3711 PMID: 24739573 PMCID: 4049238

 85. Zhou Q et al (2002) Control of mammary tumor cell growth in vitro by novel cell differentiation and apoptosis agents Breast 
Cancer Research and Treatment 75(2) 107–117 https://doi.org/10.1023/A:1019698807564 PMID: 12243503

 86. Lee SW et al (2015) The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autoph-
agy formation and p53 status in glioma cells Cancer Letters 360(2) 195–204 https://doi.org/10.1016/j.canlet.2015.02.012 PMID: 
25681668

 87. Amaravadi R and Debnath J (2014) Mouse models address key concerns regarding autophagy inhibition in cancer therapy 
Cancer Discovery 4(8) 873–875 https://doi.org/10.1158/2159-8290.CD-14-0618 PMID: 25092744 PMCID: 4124512

 88. Yang A and Kimmelman AC (2014) Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 
status Autophagy 10(9) 1683–1684 https://doi.org/10.4161/auto.29961 PMID: 25046107 PMCID: 4206544

 89. Liu F et al (2014) Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro Acta 
Pharmacologica Sinica 35(5) 645–652 https://doi.org/10.1038/aps.2014.3 PMID: 24727941 PMCID: 4814038

 90. Geng Y et al (2010) Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent 
Neuro-Oncology 12(5) 473–481 PMID: 20406898 PMCID: 2940627

 91. Burikhanov R et al (2017) Chloroquine-inducible par-4 secretion is essential for tumor cell apoptosis and inhibition of metas-
tasis Cell Reports 18(2) 508–519 https://doi.org/10.1016/j.celrep.2016.12.051 PMID: 28076793 PMCID: 5264245

 92. Amaravadi RK (2013) PUMA: a puzzle piece in chloroquine’s antimelanoma activity The Journal of Investigative Dermatology 
133(9) 2133–2135 https://doi.org/10.1038/jid.2013.135 PMID: 23949767 PMCID: 4825873

 93. Jin L et al (2016) Glutaminolysis as a target for cancer therapy Oncogene 35(28) 3619–3625 https://doi.org/10.1038/onc.2015.447

 94. Choi M-M et al (2007) Inhibitory properties of nerve-specific human glutamate dehydrogenase isozyme by chloroquine Journal 
of Biochemistry and Molecular Biology 40(6) 1077–1082 PMID: 18047806

 95. Jarzyna R et al (1997) Chloroquine is a potent inhibitor of glutamate dehydrogenase in liver and kidney-cortex of rabbit Phar-
macological Research : The Official Journal of the Italian Pharmacological Society 35(1) 79–84 https://doi.org/10.1006/phrs.1996.0108

 96. Jarzyna R et al (2001) The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action European 
Journal of Pharmacology 428(3) 381–388 https://doi.org/10.1016/S0014-2999(01)01221-3 PMID: 11689198

 97. Molenaar RJ et al (2017) Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-
mutated or IDH2-mutated solid tumours BMJ Open 7(6) e014961 https://doi.org/10.1136/bmjopen-2016-014961 PMID: 28601826 
PMCID: 5541450

 98. Lagneaux L et al (2001) Early induction of apoptosis in B-chronic lymphocytic leukaemia cells by hydroxychloroquine: activa-
tion of caspase-3 and no protection by survival factors British Journal of Haematology 112(2) 344–352 https://doi.org/10.1046/
j.1365-2141.2001.02553.x PMID: 11167827

 99. Lagneaux L et al (2002) Hydroxychloroquine-induced apoptosis of chronic lymphocytic leukemia involves activation of cas-
pase-3 and modulation of Bcl-2/bax/ratio Leukemia & Lymphoma 43(5) 1087–1095 https://doi.org/10.1080/10428190290021506

 100. Park BC et al (2008) Chloroquine-induced nitric oxide increase and cell death is dependent on cellular GSH depletion in A172 
human glioblastoma cells Toxicology Letters 178(1) 52–60 https://doi.org/10.1016/j.toxlet.2008.02.003 PMID: 18359172

https://doi.org/10.1158/1535-7163.MCT-13-0948
http://www.ncbi.nlm.nih.gov/pubmed/24785258
https://doi.org/10.1038/nrc3711
http://www.ncbi.nlm.nih.gov/pubmed/24739573
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049238
https://doi.org/10.1023/A:1019698807564
http://www.ncbi.nlm.nih.gov/pubmed/12243503
https://doi.org/10.1016/j.canlet.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25681668
https://doi.org/10.1158/2159-8290.CD-14-0618
http://www.ncbi.nlm.nih.gov/pubmed/25092744
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124512
https://doi.org/10.4161/auto.29961
http://www.ncbi.nlm.nih.gov/pubmed/25046107
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206544
https://doi.org/10.1038/aps.2014.3
http://www.ncbi.nlm.nih.gov/pubmed/24727941
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814038
http://www.ncbi.nlm.nih.gov/pubmed/20406898
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940627
https://doi.org/10.1016/j.celrep.2016.12.051
http://www.ncbi.nlm.nih.gov/pubmed/28076793
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264245
https://doi.org/10.1038/jid.2013.135
http://www.ncbi.nlm.nih.gov/pubmed/23949767
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825873
https://doi.org/10.1038/onc.2015.447
http://www.ncbi.nlm.nih.gov/pubmed/18047806
https://doi.org/10.1006/phrs.1996.0108
https://doi.org/10.1016/S0014-2999(01)01221-3
http://www.ncbi.nlm.nih.gov/pubmed/11689198
https://doi.org/10.1136/bmjopen-2016-014961
http://www.ncbi.nlm.nih.gov/pubmed/28601826
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541450
https://doi.org/10.1046/j.1365-2141.2001.02553.x
https://doi.org/10.1046/j.1365-2141.2001.02553.x
http://www.ncbi.nlm.nih.gov/pubmed/11167827
https://doi.org/10.1080/10428190290021506
https://doi.org/10.1016/j.toxlet.2008.02.003
http://www.ncbi.nlm.nih.gov/pubmed/18359172


Cl
in

ic
al

 S
tu

dy

 30 www.ecancer.org

ecancer 2017, 11:781

 101. Jiang P et al (2008) Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast can-
cer cell line Bcap-37 Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and 
pharmacology 22(5–6) 431–440 https://doi.org/10.1159/000185488 PMID: 19088425

 102. Fan C et al (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells Bioorganic & Medicinal 
Chemistry 14(9) 3218–3222 https://doi.org/10.1016/j.bmc.2005.12.035

 103. Rahim R and Strobl JS (2009) Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and his-
tone acetylation in breast cancer cells Anti-Cancer Drugs 20(8) 736–745 https://doi.org/10.1097/CAD.0b013e32832f4e50 PMID: 
19584707

 104. Justilien V and Fields AP (2015) Molecular pathways: novel approaches for improved therapeutic targeting of hedgehog signal-
ing in cancer stem cells Clinical Cancer Research 21 505–513 https://doi.org/10.1158/1078-0432.CCR-14-0507 PMID: 25646180 
PMCID: 4316382

 105. Thongchot S et al (2015) Chloroquine exerts anti-metastatic activities under hypoxic conditions in cholangiocarcinoma cells 
Asian Pacific Journal of Cancer Prevention : APJCP 16(5) 2031–2035 https://doi.org/10.7314/APJCP.2015.16.5.2031 PMID: 25773848

 106. Choi DS et al (2014) Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1 Stem Cells (Dayton, 
Ohio) 32(9) 2309–2323 https://doi.org/10.1002/stem.1746

 107. Liang DH et al (2016) The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by 
inducing mitochondrial damage and impairing DNA break repair Cancer Letters 376(2) 249–258 https://doi.org/10.1016/j.can-
let.2016.04.002 PMID: 27060208 PMCID: 4864217

 108. Inoue S et al (1993) Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin Pigment Cell 
Research / Sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society, 6(5), pp. 354–8. 
https://doi.org/10.1111/j.1600-0749.1993.tb00613.x PMID: 8302774

 109. Karmali RA et al (1978) Chloroquine enhances Epstein–Barr virus expression Nature 275(5679) 444–445 https://doi.
org/10.1038/275444a0 PMID: 211434

 110. Lenoir G and Geser A (1979) Effect of chloroquine on Epstein–Barr virus expression Nature 282(5740) 758 https://doi.
org/10.1038/282758b0 PMID: 229421

 111. Mellman I et al (2011) Cancer immunotherapy comes of age Nature 480(7378) 480–489 https://doi.org/10.1038/nature10673 PMID: 
22193102 PMCID: 3967235

 112. Pascolo S (2016) Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies European Journal of Phar-
macology 771 139–144 https://doi.org/10.1016/j.ejphar.2015.12.017

 113. Bergers G and Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch Nature Reviews Cancer 3(6) 401–
410 https://doi.org/10.1038/nrc1093 PMID: 12778130

 114. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy Science (New York, NY) 
307(5706) 58–62 https://doi.org/10.1126/science.1104819

 115. Carmeliet P and Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases 
Nature Reviews Drug Discovery 10(6) 417–427 https://doi.org/10.1038/nrd3455 PMID: 21629292

 116. Maes H et al (2014) How to teach an old dog new tricks: autophagy-independent action of chloroquine on the tumor vascula-
ture Autophagy 10(11) 2082–2084 https://doi.org/10.4161/auto.36259 PMID: 25484095 PMCID: 4502691

 117. Hagihara N et al (2000) Vascular protection by chloroquine during brain tumor therapy with Tf-CRM107 advances in brief vas-
cular protection by chloroquine during brain tumor therapy with Tf-CRM107 Cancer Research 60(2) 230–234 PMID: 10667564

https://doi.org/10.1159/000185488
http://www.ncbi.nlm.nih.gov/pubmed/19088425
https://doi.org/10.1016/j.bmc.2005.12.035
https://doi.org/10.1097/CAD.0b013e32832f4e50
http://www.ncbi.nlm.nih.gov/pubmed/19584707
https://doi.org/10.1158/1078-0432.CCR-14-0507
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4316382
https://doi.org/10.7314/APJCP.2015.16.5.2031
http://www.ncbi.nlm.nih.gov/pubmed/25773848
https://doi.org/10.1002/stem.1746
https://doi.org/10.1016/j.canlet.2016.04.002
https://doi.org/10.1016/j.canlet.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27060208
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864217
https://doi.org/10.1111/j.1600-0749.1993.tb00613.x
http://www.ncbi.nlm.nih.gov/pubmed/8302774
https://doi.org/10.1038/275444a0
https://doi.org/10.1038/275444a0
http://www.ncbi.nlm.nih.gov/pubmed/211434
https://doi.org/10.1038/282758b0
https://doi.org/10.1038/282758b0
http://www.ncbi.nlm.nih.gov/pubmed/229421
https://doi.org/10.1038/nature10673
http://www.ncbi.nlm.nih.gov/pubmed/22193102
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967235
https://doi.org/10.1016/j.ejphar.2015.12.017
https://doi.org/10.1038/nrc1093
http://www.ncbi.nlm.nih.gov/pubmed/12778130
https://doi.org/10.1126/science.1104819
https://doi.org/10.1038/nrd3455
http://www.ncbi.nlm.nih.gov/pubmed/21629292
https://doi.org/10.4161/auto.36259
http://www.ncbi.nlm.nih.gov/pubmed/25484095
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502691
http://www.ncbi.nlm.nih.gov/pubmed/10667564


Cl
in

ic
al

 S
tu

dy

 31 www.ecancer.org

ecancer 2017, 11:781

 118. McAllister SS and Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression 
and metastasis Nature Cell Biology 16(8) 717–727 https://doi.org/10.1038/ncb3015 PMID: 25082194

 119. Ko Y-H et al (2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism 
in epithelial cancer cells: implications for preventing chemotherapy resistance Cancer Biology & Therapy 12(12) 1085–1097 
https://doi.org/10.4161/cbt.12.12.18671

 120. Martinez-Outschoorn UE et al (2010) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degrada-
tion: implications for breast cancer and DCIS therapy with autophagy inhibitors Cell Cycle (Georgetown, TX) 9(12) 2423–2433 
https://doi.org/10.4161/cc.9.12.12048

 121. Kimura T et al (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy Cancer Research 73(1) 3–7 https://doi.
org/10.1158/0008-5472.CAN-12-2464 PMID: 23288916

 122. Lee CM and Tannock IF (2006) Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and 
tissue penetration British Journal of Cancer 94(6) 863–869 https://doi.org/10.1038/sj.bjc.6603010 PMID: 16495919 PMCID: 2361369

 123. Hurwitz SJ et al (1997) Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: participation of lysosomes 
Blood 89(10) 3745–3754 PMID: 9160680

 124. Maycotte P et al (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy Autophagy 8(2) 
200–212 https://doi.org/10.4161/auto.8.2.18554 PMID: 22252008 PMCID: 3336076

 125. Vezmar M and Georges E (1998) Direct binding of chloroquine to the multidrug resistance protein (MRP): possible role for MRP 
in chloroquine drug transport and resistance in tumor cells Biochemical Pharmacology 56(6) 733–742 https://doi.org/10.1016/
S0006-2952(98)00217-2 PMID: 9751078

 126. Vezmar M and Georges E (2000) Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs Biochemical 
Pharmacology 59(10) 1245–1252 https://doi.org/10.1016/S0006-2952(00)00270-7 PMID: 10736425

 127. Maes H et al (2014) Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro Experimental 
Dermatology 23(2) 101–106 https://doi.org/10.1111/exd.12298

 128. Battisti S et al (2012) Nutritional stress and arginine auxotrophy confer high sensitivity to chloroquine toxicity in mesothe-
lioma cells American Journal of Respiratory Cell and Molecular Biology 46(4) 498–506 https://doi.org/10.1165/rcmb.2011-0195OC

 129. Amaravadi RK et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma 
The Journal of Clinical Investigation 117(2) 326–336 https://doi.org/10.1172/JCI28833 PMID: 17235397 PMCID: 1765515

 130. Levy JM et al (2014) Using BRAF(V600E) as a marker of autophagy dependence in pediatric brain tumors Autophagy 10(11) 
2077–2078 https://doi.org/10.4161/auto.36138

 131. Egger ME et al (2013) Inhibition of autophagy with chloroquine is effective in melanoma The Journal of Surgical Research 184(1) 
274–281 https://doi.org/10.1016/j.jss.2013.04.055 PMID: 23706562

 132. Pimkina J and Murphy ME (2009) ARF, autophagy and tumor suppression Autophagy 5(3) 397–399 https://doi.org/10.4161/
auto.5.3.7782 PMID: 19221462 PMCID: 2667648

 133. Mancias JD and Kimmelman AC (2011) Targeting autophagy addiction in cancer Oncotarget 2(12) 1302–1306 https://doi.
org/10.18632/oncotarget.384 PMID: 22185891 PMCID: 3282086

 134. Morgan MJ et al (2014) Regulation of autophagy and chloroquine sensitivity by oncogenic RAS in vitro is context-dependent 
Autophagy 10(10) 1814–1826 https://doi.org/10.4161/auto.32135 PMID: 25136801 PMCID: 4198365

 135. Eng CH et al (2016) Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy Proceed-
ings of the National Academy of Sciences of the United States of America 113(1) 182–187 https://doi.org/10.1073/pnas.1515617113 
PMCID: 4711870

https://doi.org/10.1038/ncb3015
http://www.ncbi.nlm.nih.gov/pubmed/25082194
https://doi.org/10.4161/cbt.12.12.18671
https://doi.org/10.4161/cc.9.12.12048
https://doi.org/10.1158/0008-5472.CAN-12-2464
https://doi.org/10.1158/0008-5472.CAN-12-2464
http://www.ncbi.nlm.nih.gov/pubmed/23288916
https://doi.org/10.1038/sj.bjc.6603010
http://www.ncbi.nlm.nih.gov/pubmed/16495919
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361369
http://www.ncbi.nlm.nih.gov/pubmed/9160680
https://doi.org/10.4161/auto.8.2.18554
http://www.ncbi.nlm.nih.gov/pubmed/22252008
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3336076
https://doi.org/10.1016/S0006-2952(98)00217-2
https://doi.org/10.1016/S0006-2952(98)00217-2
http://www.ncbi.nlm.nih.gov/pubmed/9751078
https://doi.org/10.1016/S0006-2952(00)00270-7
http://www.ncbi.nlm.nih.gov/pubmed/10736425
https://doi.org/10.1111/exd.12298
https://doi.org/10.1165/rcmb.2011-0195OC
https://doi.org/10.1172/JCI28833
http://www.ncbi.nlm.nih.gov/pubmed/17235397
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765515
https://doi.org/10.4161/auto.36138
https://doi.org/10.1016/j.jss.2013.04.055
http://www.ncbi.nlm.nih.gov/pubmed/23706562
https://doi.org/10.4161/auto.5.3.7782
https://doi.org/10.4161/auto.5.3.7782
http://www.ncbi.nlm.nih.gov/pubmed/19221462
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667648
https://doi.org/10.18632/oncotarget.384
https://doi.org/10.18632/oncotarget.384
http://www.ncbi.nlm.nih.gov/pubmed/22185891
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282086
https://doi.org/10.4161/auto.32135
http://www.ncbi.nlm.nih.gov/pubmed/25136801
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198365
https://doi.org/10.1073/pnas.1515617113
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711870


Cl
in

ic
al

 S
tu

dy

 32 www.ecancer.org

ecancer 2017, 11:781

 136. Hong S-K et al (2013) Autophagy sensitivity of neuroendocrine lung tumor cells International Journal of Oncology 43(6) 2031–
2038 https://doi.org/10.3892/ijo.2013.2136 PMID: 24126619 PMCID: 3834067

 137. Vessoni AT et al (2016) Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but 
not oxidative stress Free Radical Biology and Medicine 90 91–100 https://doi.org/10.1016/j.freeradbiomed.2015.11.008

 138. Pantziarka P et al (2014) The Repurposing Drugs in Oncology (ReDO) project Ecancer Medical Science 8 442 PMID: 25075216 
PMCID: 4096030

 139. Buch I et al (2016) Schedule-dependent synergy of chloroquine with chemotherapy for anti-cancer treatment Cancer Research 
and Oncology: Open Access 2(2)

 140. Schroeder RL and Gerber JP (2014) Chloroquine and hydroxychloroquine binding to melanin: some possible consequences 
for pathologies Toxicology Reports 1 963–968 https://doi.org/10.1016/j.toxrep.2014.10.019 PMID: 28962308 PMCID: 5598414

 141. Sundelin SP and Terman A (2002) Different effects of chloroquine and hydroxychloroquine on lysosomal function in cultured 
retinal pigment epithelial cells APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 110(6) 481–489 https://doi.
org/10.1034/j.1600-0463.2002.100606.x PMID: 12193209

 142. McAfee Q et al (2012) Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a 
genetic autophagy deficiency Proceedings of the National Academy of Sciences of the United States of America 109(21) 8253–8258 
https://doi.org/10.1073/pnas.1118193109 PMID: 22566612 PMCID: 3361415

 143. Solomon VR and Lee H (2009) Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer thera-
pies European Journal of Pharmacology 625(1–3) 220–233 https://doi.org/10.1016/j.ejphar.2009.06.063 PMID: 19836374

 144. Zhang H et al (2008) Synthesis and in vitro cytotoxicity evaluation of 4-aminoquinoline derivatives Biomedicine & Pharmaco-
therapy 62(2) 65–69 https://doi.org/10.1016/j.biopha.2007.04.007

 145. Goodall ML et al (2014) Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma 
tumor cells to vemurafenib Autophagy 10(6) 1120–1136 https://doi.org/10.4161/auto.28594 PMID: 24879157 PMCID: 4091172

 146. Dai J-P et al (2013) Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC 
technique and mechanism of eugenol on anti-influenza A virus activity PloS One 8(4) e61026 https://doi.org/10.1371/journal.
pone.0061026 PMID: 23613775 PMCID: 3628889

 147. Anighoro A et al (2014) Polypharmacology: challenges and opportunities in drug discovery Journal of Medicinal Chemistry 
57(19) 7874–7887 https://doi.org/10.1021/jm5006463 PMID: 24946140

 148. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery Nature Chemical Biology 4(11) 682–690 https://
doi.org/10.1038/nchembio.118 PMID: 18936753

 149. Reagan-Shaw S et al (2008) Dose translation from animal to human studies revisited FASEB Journal : Official Publication of the 
Federation of American Societies for Experimental Biology 22(3) 659–661 https://doi.org/10.1096/fj.07-9574LSF

 150. Golden EB et al (2014) Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy Neuro-
surgical Focus 37(6) E12 https://doi.org/10.3171/2014.9.FOCUS14504 PMID: 25434381

 151. Zanotto-Filho A et al (2015) Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in 
glioblastomas Cancer Letters 358(2) 220–231 https://doi.org/10.1016/j.canlet.2014.12.044

 152. Gaudin D et al (1971) The effect of DNA repair inhibitors on e response of tumors treated with x-ray and alkylating agents 
Proceedings of the Society for Experimental Biology and Medicine (New York, NY) 137(1) 202–206 https://doi.org/10.3181/00379727-
137-35544

https://doi.org/10.3892/ijo.2013.2136
http://www.ncbi.nlm.nih.gov/pubmed/24126619
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834067
https://doi.org/10.1016/j.freeradbiomed.2015.11.008
http://www.ncbi.nlm.nih.gov/pubmed/25075216
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096030
https://doi.org/10.1016/j.toxrep.2014.10.019
http://www.ncbi.nlm.nih.gov/pubmed/28962308
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598414
https://doi.org/10.1034/j.1600-0463.2002.100606.x
https://doi.org/10.1034/j.1600-0463.2002.100606.x
http://www.ncbi.nlm.nih.gov/pubmed/12193209
https://doi.org/10.1073/pnas.1118193109
http://www.ncbi.nlm.nih.gov/pubmed/22566612
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361415
https://doi.org/10.1016/j.ejphar.2009.06.063
http://www.ncbi.nlm.nih.gov/pubmed/19836374
https://doi.org/10.1016/j.biopha.2007.04.007
https://doi.org/10.4161/auto.28594
http://www.ncbi.nlm.nih.gov/pubmed/24879157
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091172
https://doi.org/10.1371/journal.pone.0061026
https://doi.org/10.1371/journal.pone.0061026
http://www.ncbi.nlm.nih.gov/pubmed/23613775
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628889
https://doi.org/10.1021/jm5006463
http://www.ncbi.nlm.nih.gov/pubmed/24946140
https://doi.org/10.1038/nchembio.118
https://doi.org/10.1038/nchembio.118
http://www.ncbi.nlm.nih.gov/pubmed/18936753
https://doi.org/10.1096/fj.07-9574LSF
https://doi.org/10.3171/2014.9.FOCUS14504
http://www.ncbi.nlm.nih.gov/pubmed/25434381
https://doi.org/10.1016/j.canlet.2014.12.044
https://doi.org/10.3181/00379727-137-35544
https://doi.org/10.3181/00379727-137-35544


Cl
in

ic
al

 S
tu

dy

 33 www.ecancer.org

ecancer 2017, 11:781

 153. Lefort S et al (2014) Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-
negative breast cancers Autophagy 10(12) 2122–2142 https://doi.org/10.4161/15548627.2014.981788 PMID: 25427136 PMCID: 
4502743

 154. Yu L et al (2014) Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with 
acquired drug resistance Cancer Letters 355 34–45 https://doi.org/10.1016/j.canlet.2014.09.020 PMID: 25236911

 155. Zhang H et al (2015) Antitumor activity of chloroquine in combination with cisplatin in human gastric cancer xenografts Asian 
Pacific Journal of Cancer Prevention 16 3907–3912 https://doi.org/10.7314/APJCP.2015.16.9.3907 PMID: 25987058

 156. Zhao X et al (2015) Chloroquine-enhanced efficacy of cisplatin in the treatment of hypopharyngeal carcinoma in xenograft 
mice PloS One 10(4): e01 1–12

 157. Ding Z-B et al (2011) Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive 
oxygen species modulation Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 17(19) 
6229–6238 https://doi.org/10.1158/1078-0432.CCR-11-0816 PMID: 21825039

 158. Selvakumaran M et al (2013) Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy Clini-
cal Cancer Research 19(11) 2995–3007 https://doi.org/10.1158/1078-0432.CCR-12-1542 PMID: 23461901

 159. Shoemaker JP (1978) Fifty-five percent complete remission of mammary carcinoma in mice with 5-fluorouracil and chloro-
quine Cancer Research 38(September) 2700–2702 PMID: 679173

 160. Guo X-L et al (2012) Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepato-
carcinoma cells Cancer Letters 320(2) 171–179 https://doi.org/10.1016/j.canlet.2012.03.002 PMID: 22406827

 161. Sasaki K et al (2012) Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in 
vivo study Anti-Cancer Drugs 23(7) 675–682 https://doi.org/10.1097/CAD.0b013e328353f8c7 PMID: 22561420

 162. Shoemaker JP and Dagher RK (1979) Remissions of mammary adenocarcinoma in hypothyroid mice given 5-fluorouracil and 
chloroquine phosphate Journal of the National Cancer Institute 62(6) 1575–1578 PMID: 286128

 163. Xiong S et al (2010) Triggering liposomal drug release with a lysosomotropic agent Journal of Pharmaceutical Sciences 99(12) 
5011–5018 https://doi.org/10.1002/jps.22210 PMID: 20821395

 164. Arnold AM and Whitehouse JM (1982) Interaction of VP16-213 with the DNA repair antagonist chloroquine Cancer Chemotherapy 
and Pharmacology 7(2–3) 123–126 https://doi.org/10.1007/BF00254533

 165. Cook KL et al (2014) Hydroxychloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER+ breast can-
cer Clinical Cancer Research : an Official Journal of the American Association for Cancer Research 20(12) 3222–3232 https://doi.
org/10.1158/1078-0432.CCR-13-3227 PMID: 24928945 PMCID: 4073207

 166. Seront E et al (2013) Tumour hypoxia determines the potential of combining mTOR and autophagy inhibitors to treat mam-
mary tumours British Journal of Cancer 109(10) 2597–2606 https://doi.org/10.1038/bjc.2013.644 PMID: 24157830 PMCID: 3833227

 167. Bray K et al (2012) Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition PloS One 7(7) 
e41831 https://doi.org/10.1371/journal.pone.0041831 PMID: 22848625 PMCID: 3406086

 168. Kaneko M et al (2014) Temsirolimus and chloroquine cooperatively exhibit a potent antitumor effect against colorectal cancer 
cells Journal of Cancer Research and Clinical Oncology 140(5) 769–781 https://doi.org/10.1007/s00432-014-1628-0 PMID: 24619662

 169. Xie X et al (2013) Coordinate autophagy and mTOR pathway inhibition enhances cell death in melanoma PloS One 8(1) e55096 
https://doi.org/10.1371/journal.pone.0055096 PMID: 23383069 PMCID: 3559441

https://doi.org/10.4161/15548627.2014.981788
http://www.ncbi.nlm.nih.gov/pubmed/25427136
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502743
https://doi.org/10.1016/j.canlet.2014.09.020
http://www.ncbi.nlm.nih.gov/pubmed/25236911
https://doi.org/10.7314/APJCP.2015.16.9.3907
http://www.ncbi.nlm.nih.gov/pubmed/25987058
https://doi.org/10.1158/1078-0432.CCR-11-0816
http://www.ncbi.nlm.nih.gov/pubmed/21825039
https://doi.org/10.1158/1078-0432.CCR-12-1542
http://www.ncbi.nlm.nih.gov/pubmed/23461901
http://www.ncbi.nlm.nih.gov/pubmed/679173
https://doi.org/10.1016/j.canlet.2012.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22406827
https://doi.org/10.1097/CAD.0b013e328353f8c7
http://www.ncbi.nlm.nih.gov/pubmed/22561420
http://www.ncbi.nlm.nih.gov/pubmed/286128
https://doi.org/10.1002/jps.22210
http://www.ncbi.nlm.nih.gov/pubmed/20821395
https://doi.org/10.1007/BF00254533
https://doi.org/10.1158/1078-0432.CCR-13-3227
https://doi.org/10.1158/1078-0432.CCR-13-3227
http://www.ncbi.nlm.nih.gov/pubmed/24928945
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073207
https://doi.org/10.1038/bjc.2013.644
http://www.ncbi.nlm.nih.gov/pubmed/24157830
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833227
https://doi.org/10.1371/journal.pone.0041831
http://www.ncbi.nlm.nih.gov/pubmed/22848625
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406086
https://doi.org/10.1007/s00432-014-1628-0
http://www.ncbi.nlm.nih.gov/pubmed/24619662
https://doi.org/10.1371/journal.pone.0055096
http://www.ncbi.nlm.nih.gov/pubmed/23383069
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559441


Cl
in

ic
al

 S
tu

dy

 34 www.ecancer.org

ecancer 2017, 11:781

 170. Rao R et al (2012) Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against 
triple-negative human breast cancer cells Molecular Cancer Therapeutics 11(4) 973–983 https://doi.org/10.1158/1535-7163.MCT-
11-0979 PMID: 22367781

 171. Carew JS et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation 
Journal of Cellular and Molecular Medicine 14(10) 2448–2459 https://doi.org/10.1111/j.1582-4934.2009.00832.x PMCID: 2891399

 172. Ding W-X et al (2009) Oncogenic transformation confers a selective susceptibility to the combined suppression of the pro-
teasome and autophagy Molecular Cancer Therapeutics 8(7) 2036–2045 https://doi.org/10.1158/1535-7163.MCT-08-1169 PMID: 
19584239 PMCID: 2711219

 173. Hui B et al (2012) Proteasome inhibitor interacts synergistically with autophagy inhibitor to suppress proliferation and induce 
apoptosis in hepatocellular carcinoma Cancer 118(22) 5560–5571 https://doi.org/10.1002/cncr.27586 PMID: 22517429

 174. Tang M-C et al (2015) Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells PloS 
One 10(3) e0119135 https://doi.org/10.1371/journal.pone.0119135 PMID: 25807554 PMCID: 4373825

 175. Dragowska WH et al (2013) Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast 
cancer PLoS One 8(10) 1–20 https://doi.org/10.1371/journal.pone.0076503

 176. Bokobza SM et al (2014) Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and 
induces cell death in EGFR mutated NSCLC cells Oncotarget 5(13) 4765–4778 https://doi.org/10.18632/oncotarget.2017 PMID: 
24946858 PMCID: 4148097

 177. Zou Y et al (2013) The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell 
lung cancer cells to erlotinib Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung 
Cancer 8(6) 693–702 https://doi.org/10.1097/JTO.0b013e31828c7210 PMID: 23575415 PMCID: 3855301

 178. Bellodi C et al. (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chro-
mosome-positive cells, including primary CML stem cells The Journal of Clinical Investigation 119(5) 1109–1123 https://doi.
org/10.1172/JCI35660 PMID: 19363292 PMCID: 2673867

 179. Abdel-Aziz AK et al (2014) Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic 
machineries Chemico-Biological Interactions 217 28–40 https://doi.org/10.1016/j.cbi.2014.04.007 PMID: 24751611

 180. Shimizu S et al (2012) Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepa-
tocellular carcinoma International Journal of Cancer 131(3) 548–557 https://doi.org/10.1002/ijc.26374

 181. Shi Y-H et al (2011) Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apop-
tosis Autophagy 7(10) 1159–1172 https://doi.org/10.4161/auto.7.10.16818 PMID: 21691147

 182. Ji C et al (2014) Induction of autophagy contributes to crizotinib resistance in ALK-positive lung cancer Cancer Biology & 
Therapy 15(5) 570–577 https://doi.org/10.4161/cbt.28162

 183. You L et al (2015) Crizotinib induces autophagy through inhibition of the STAT3 pathway in multiple lung cancer cell lines 
Oncotarget 6(37) 40268–40282 https://doi.org/10.18632/oncotarget.5592 PMID: 26384345 PMCID: 4741894

 184. Mitou G et al (2015) Targeting autophagy enhances the anti-tumoral action of crizotinib in ALK-positive anaplastic large cell 
lymphoma Oncotarget 6(30) 30149–30164 https://doi.org/10.18632/oncotarget.4999 PMID: 26338968 PMCID: 4745787

 185. Shen J et al (2013) Autophagy inhibition induces enhanced proapoptotic effects of ZD6474 in glioblastoma British Journal of 
Cancer 109(1) 164–171 https://doi.org/10.1038/bjc.2013.306 PMID: 23799852 PMCID: 3708568

 186. Hu Y-L et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment 
in glioblastoma Cancer Research 72(7) 1773–1783 https://doi.org/10.1158/0008-5472.CAN-11-3831 PMID: 22447568 PMCID: 
3319869

https://doi.org/10.1158/1535-7163.MCT-11-0979
https://doi.org/10.1158/1535-7163.MCT-11-0979
http://www.ncbi.nlm.nih.gov/pubmed/22367781
https://doi.org/10.1111/j.1582-4934.2009.00832.x
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891399
https://doi.org/10.1158/1535-7163.MCT-08-1169
http://www.ncbi.nlm.nih.gov/pubmed/19584239
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711219
https://doi.org/10.1002/cncr.27586
http://www.ncbi.nlm.nih.gov/pubmed/22517429
https://doi.org/10.1371/journal.pone.0119135
http://www.ncbi.nlm.nih.gov/pubmed/25807554
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373825
https://doi.org/10.1371/journal.pone.0076503
https://doi.org/10.18632/oncotarget.2017
http://www.ncbi.nlm.nih.gov/pubmed/24946858
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148097
https://doi.org/10.1097/JTO.0b013e31828c7210
http://www.ncbi.nlm.nih.gov/pubmed/23575415
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855301
https://doi.org/10.1172/JCI35660
https://doi.org/10.1172/JCI35660
http://www.ncbi.nlm.nih.gov/pubmed/19363292
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673867
https://doi.org/10.1016/j.cbi.2014.04.007
http://www.ncbi.nlm.nih.gov/pubmed/24751611
https://doi.org/10.1002/ijc.26374
https://doi.org/10.4161/auto.7.10.16818
http://www.ncbi.nlm.nih.gov/pubmed/21691147
https://doi.org/10.4161/cbt.28162
https://doi.org/10.18632/oncotarget.5592
http://www.ncbi.nlm.nih.gov/pubmed/26384345
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741894
https://doi.org/10.18632/oncotarget.4999
http://www.ncbi.nlm.nih.gov/pubmed/26338968
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745787
https://doi.org/10.1038/bjc.2013.306
http://www.ncbi.nlm.nih.gov/pubmed/23799852
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708568
https://doi.org/10.1158/0008-5472.CAN-11-3831
http://www.ncbi.nlm.nih.gov/pubmed/22447568
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319869


Cl
in

ic
al

 S
tu

dy

 35 www.ecancer.org

ecancer 2017, 11:781

 187. Cufí S et al (2013) The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in 
HER2-positive breast cancer Scientific Reports 3 2469 https://doi.org/10.1038/srep02469 PMCID: 3749547

 188. Ratikan JA et al (2013) Chloroquine engages the immune system to eradicate irradiated breast tumors in mice International 
Journal of Radiation Oncology, Biology, Physics 87(4) 761–768 https://doi.org/10.1016/j.ijrobp.2013.07.024 PMID: 24138918

 189. Wei M-F et al (2014) Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal 
cancer stem-like cells Autophagy 10(7) 1179–1192 https://doi.org/10.4161/auto.28679 PMID: 24905352 PMCID: 4203546

 190. Liang X et al (2012) Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression 
Cancer Research 72(11) 2791–2801 https://doi.org/10.1158/0008-5472.CAN-12-0320 PMID: 22472122 PMCID: 3417121

 191. Thomas S et al (2012) Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological 
aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors Cancer Letters 325(1) 63–71 https://doi.
org/10.1016/j.canlet.2012.05.030 PMID: 22664238

 192. Harhaji-Trajkovic L et al (2012) Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient depri-
vation Pharmaceutical Research 29(8) 2249–2263 https://doi.org/10.1007/s11095-012-0753-1 PMID: 22538436

 193. Thomas R et al (1990) The effect of chloroquine and hyperthermia on murine neuroblastoma Journal of Pediatric Surgery 25(9) 
929–932 https://doi.org/10.1016/0022-3468(90)90232-X PMID: 2213444

 194. Gao L et al (2013) Chloroquine promotes the anticancer effect of TACE in a rabbit VX2 liver tumor model International Journal 
of Biological Sciences 9(4) 322–330 https://doi.org/10.7150/ijbs.5925 PMID: 23569437 PMCID: 3619094

https://doi.org/10.1038/srep02469
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749547
https://doi.org/10.1016/j.ijrobp.2013.07.024
http://www.ncbi.nlm.nih.gov/pubmed/24138918
https://doi.org/10.4161/auto.28679
http://www.ncbi.nlm.nih.gov/pubmed/24905352
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203546
https://doi.org/10.1158/0008-5472.CAN-12-0320
http://www.ncbi.nlm.nih.gov/pubmed/22472122
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417121
https://doi.org/10.1016/j.canlet.2012.05.030
https://doi.org/10.1016/j.canlet.2012.05.030
http://www.ncbi.nlm.nih.gov/pubmed/22664238
https://doi.org/10.1007/s11095-012-0753-1
http://www.ncbi.nlm.nih.gov/pubmed/22538436
https://doi.org/10.1016/0022-3468(90)90232-X
http://www.ncbi.nlm.nih.gov/pubmed/2213444
https://doi.org/10.7150/ijbs.5925
http://www.ncbi.nlm.nih.gov/pubmed/23569437
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3619094

