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Abstract

Objective: Upper gastrointestinal (UGI) cancers, particularly esophageal cancer (EC) and 
gastric cancer (GC) represent a significant health burden with complex etiologies. Meta-
bolic alterations are known to play a crucial role in cancer development and progres-
sion. Identifying key metabolic biomarkers may offer insights into the pathophysiology of 
UGI cancers and potential therapeutic targets. This study aimed to investigate the causal 
associations between 1,400 types of metabolites, specifically phosphate-to-alanine and 
bilirubin-to-androsterone glucuronide, and the risk of developing UGI cancers using 
Mendelian randomisation (MR) analysis.

Method: We conducted a two-sample MR study utilising genetic instruments identified 
from large-scale genome-wide association studies (GWASs) for metabolic traits. The out-
comes were derived from GWAS datasets of UGI cancer patients, including EC and GC. 
Several MR methods were employed to ensure the robustness of the findings, including 
inverse variance weighted (IVW), MR-Egger and weighted median approaches.

Results: Our analysis found a total of 44 metabolites associated with EC and 15 metab-
olites associated with GC. The MR analyses revealed a significant causal relationship 
between the phosphate-to-alanine ratio (EC: OR = 1.002,95% CI = 1.00034−1.0037, 
p = 0.0037; GC: OR = 1.24,95% CI = 1.046−1.476, p = 0.01) and increased risk of UGI 
cancers. In contrast, the bilirubin-to-androsterone glucuronide ratio (EC: OR = 0.998,95% 
CI = 0.997−0.999, p = 0.03; GC: OR = 0.80,95% CI = 0.656−0.991, p = 0.04) was inversely 
associated with the risk, suggesting a potential protective effect. 

Conclusion: Our findings suggest that the phosphate-to-alanine ratio and bilirubin-to-
androsterone glucuronide ratio are key hub metabolites in the etiology of UGI cancers. 
These metabolic ratios could serve as potential biomarkers for early detection or targets 
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for therapeutic intervention. Further research is warranted to elucidate the underlying biological mechanisms and to validate the clinical util-
ity of these associations.
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Introduction

Upper gastrointestinal (UGI) cancers, encompassing malignancies of the esophagus and stomach, remain a leading cause of cancer-related 
morbidity and mortality worldwide [1]. The prognosis in many countries remains dire, largely due to the absence of effective screening pro-
grams [2, 3]. Understanding the mechanisms underlying the initiation and progression of these cancers is crucial for developing effective 
prevention and treatment approaches. In recent years, there has been increasing evidence that metabolites, small molecules involved in 
cellular metabolism, are linked to the causal pathways of UGI cancers. Advances in molecular biology and the development of various omics 
approaches have significantly enhanced molecular epidemiological studies in this field [4].

An imbalance in metabolism is increasingly recognised as a crucial element in the development of UGI cancers [5]. Beyond the well-estab-
lished alterations in glucose metabolism, such as the Warburg effect, disturbances in the metabolism of nucleotides, lipids and amino acids 
have also been reported in both lab and clinical research [6–8]. Metabolites, which are the end products of intricate interplays between inher-
ent metabolic processes, genetic factors and environmental conditions, act as a snapshot of these biochemical processes. Metabolomics, 
utilising high-throughput techniques, allows for the detailed detection and quantification of a vast range of small-molecule metabolites (with 
molecular weights less than 1,000 Da) from a single sample. This approach is instrumental in discovering new biomarkers and in deepening 
our understanding of the mechanisms of cancer development [9, 10]. Moreover, it paves the way for uncovering novel preventative strategies 
and therapeutic targets [11]. 

Previous observational studies have indicated a link between metabolites and an increased likelihood of developing UGI cancer [4, 12–15]. 
However, observational studies are susceptible to biases and confounding factors, limiting their ability to establish causality. Mendelian 
randomisation (MR) was initially conceptualised and developed as a method to provide robust evidence of causality through the analysis of 
genetic variation in relation to exposure and outcome, serving as a potential alternative to randomised controlled trials [16]. This approach 
leverages the random allocation of genetic variation at conception, well before the onset of disease, making MR a valuable tool for establish-
ing causality and mitigating the risk of reverse causality, independent of confounders typically present in study designs [17]. Here, we utilised 
MR to investigate the histophysiology and pathophysiological involvement of the metabolites in the development of digestive tract cancers, 
achieved by a recent statistical summary from a genome-wide association study (GWAS) focused on metabolites [18]. 

The phosphate-to-alanine ratio and the bilirubin-to-androsterone glucuronide ratio have been implicated in various metabolic processes 
relevant to cancer biology. Phosphate is essential for energy metabolism and cellular signaling, while alanine, a non-essential amino acid, 
can be utilised by cancer cells to support gluconeogenesis and energy production under hypoxic conditions [33, 41]. Bilirubin, a product of 
heme catabolism, exhibits antioxidant properties, whereas androsterone glucuronide, a metabolite of steroid hormones, may influence can-
cer growth through hormonal pathways [60, 63]. This MR study aims to systematically investigate the causal relationships between 1,400 
types of metabolites, specifically phosphate-to-alanine and bilirubin-to-androsterone glucuronide, and the risk of developing UGI cancers. By 
doing so, we seek to elucidate the potential of these ratios as hub metabolites in the metabolic landscape of UGI cancers and to explore their 
utility as biomarkers for cancer risk or progression. The findings could provide a foundation for novel preventive and therapeutic strategies 
targeting metabolic dysregulation in UGI malignancies.

Materials and methods

Study design

The relationship between a vast array of metabolites and UGI cancers was examined in this study through the application of two-sample MR 
analyses. MR exploits genetic variants as surrogates for modifiable risk factors to infer causality. For MR to provide trustworthy conclusions 
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about causal relationships, it is imperative that the instrumental variables (IVs) employed meet three critical criteria: First, the genetic variant must 
have a direct association with the metabolite of interest (the exposure). Second, the genetic variant should not be associated with confounding 
factors that could influence both the exposure and the outcome, ensuring that observed associations are not spurious. Finally, the genetic variant 
should affect the outcome solely through its impact on the exposure, with no alternative pathways influencing the outcome Figure 1. 

Data sources for exposure and outcome

The sources of metabolite-wide GWAS data. The statistics summary of GWAS for each metabolite is publicly available from the European 
GWASs (accession number: GCST90199621-90201020) or non-European GWASs (accession number: GCST90201021-90204063) [19]. To 
identify relevant data for each cancer type, we used cancer-specific keywords to search (https://gwas.mrcieu.ac.uk/). For esophageal cancer 
(EC), we selected ieu-b-4960 (EC), and for gastric cancer (GC), we chose ebi-a-GCST90018849 (GC). Following this, we downloaded the 
corresponding data (from https://www.ebi.ac.uk/gwas/) based on the IDs of each cancer type, which was used for the analysis of the rela-
tion between 1,400 types of metabolites and UGI cancers. A reference panel derived from Sardinian sequences was utilised [20] to estimate 
approximately 22 million single-nucleotide polymorphisms (SNPs) genotyped using high-density arrays, and correlations were assessed fol-
lowing adjustment for covariates. The GWAS database is a comprehensive collection of genetic variation and its association with various 
traits or diseases. It provides a valuable resource for researchers and clinicians interested in understanding the genetic basis of complex traits 
and diseases. Based on the ID of each cancer, we used online data from GWAS including 372,756 European individuals (n = 740 case patients 
and 372,016 control participants) for EC, and 476,116 European individuals (n = 1,029 case patients and 475,087 control participants) for GC 
to analyse the relationship between 1,400 type metabolites and each cancer according to IDs (https://www.ebi.ac.uk/gwas/).

Genetic Variants
(Instruments)

Reverse Causation

Metabolites
(Exposure)

Upper GI Cancers
(Outcome)

No causal effect

Confounding Factors

UK Biobank
 Esophageal Cancer(EC )cases: 740
 Controls: 372,016
 European ancestry (British)
 we selected ieu-b-4960 for EC

GWAS Datasets
 Gastric Cancer (GC) cases: 1,029
 Controls: 475,087 
 European ancestry (British)
 we selected ebi-a-GCST90018849
for GC

MR analysis for each exposure:
 IVW
Sensitivity analysis for each exposure:
 Weighted-Median estimator
 MR Egger regression
 MR PRESSO
Selection criteria:P<5 × 10^-8; R^2 <0001 
within 10Mb distance:F statistics>10

MR analysis for each exposure:
 IVW
Sensitivity analysis for each exposure:
 Weighted-Median estimator
 MR Egger regression
 MR PRESSO
Selection criteria: P<5 × 10^-8; R^2 <0001 within 
10Mb distance:F statistics>10

Current Mendelian Randomization Study

Figure 1. Flowchart of the study design.
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Instrument selection

In light of the large number of SNPs reaching genome-wide significance (p < 5 × 10-8) for metabolite traits, we adopted more stringent criteria 
(p < 5 × 10-9) for selecting genetic IVs [21]. These IVs were pinpointed by categorising them based on the linkage disequilibrium reference panel 
from the 1,000 Genomes Project, applying a cutoff of R2 < 0.001 at a distance of up to 1,000 kilobases (kb). Due to the comparatively smaller 
size of GWAS datasets for metabolites, we utilised a p-value threshold of 5 × 10-8 and a more relaxed clustering threshold (R2 < 0.1 at a distance 
of 500 kb) [22]. To ensure the strength of our genetic instruments, we only selected IVs with F-statistics greater than 10, thereby qualifying 
them as robust instruments for our analyses. These IVs were then extracted from the summary data for UGI cancer outcomes. We excluded 
any SNPs that demonstrated potential pleiotropic effects (p < 10-5) on UGI cancer, which is consistent with protocols from prior studies [23]. 
We harmonised the SNPs across the datasets for exposures and outcomes to ensure coherent effect size estimations for the same alleles. 
SNPs with effect allele frequencies greater than 0.42 or those that were incompatible with harmonisation, were omitted from our analysis [22]. 
This process of careful SNP selection and harmonisation ensures the integrity and consistency of our MR analysis.

Statistical analysis

R 4.3.1 software (http://www.Rproject.org) was used to perform the analysis. Three methods were primarily utilised to reveal the causal 
relationship between 1,400 types of metabolites and UGI cancers: inverse variance weighting (IVW) [24], median-based weighting [25] 
and pattern-based weighting [26]. These analysis were primarily carried out using the software package of ‘TwoSampleMR’ (version 0.4.3) 
[27]. To assess heterogeneity among the selected IVs, Cochran's Q statistical along with corresponding values were utilised. Where the null 
hypothesis was rejected, we opted for random effects IVW in lieu of fixed effects [24]. In addressing the potential impact of horizontal pleiot-
ropy, we employed the MR-Egger method. This method is particularly useful for detecting the presence of horizontal pleiotropy, indicated by 
a statistically significant intercept term [24]. Furthermore, we used the MR Pleiotropy Residual Sum and Outlier method, a robust approach to 
identify and eliminate potential horizontal pleiotropic outliers that might significantly influence our estimation results [28]. To further validate 
our findings, scatterplots and funnel plots were used. These plots confirmed that our results were not biased by outliers and demonstrated 
that the correlations observed were robust and exhibited no significant heterogeneity.

Results

To assess the causal impact of various metabolites on EC and GC, we employed a two-sample MR analysis using the method of IVW. In 
our study, we found a total of 44 metabolites associated with EC and 15 metabolites associated with GC (Tables 1 and 2). Phosphate-to-
alanine ratio (EC: OR = 1.002,95% CI = 1.00034− 1.0037, p = 0.0037; GC: OR = 1.24,95% CI = 1.046− 1.476, p = 0.01) and bilirubin (Z,Z) to 
androsterone glucuronide (EC: OR = 0.998,95% CI = 0.997− 0.999, p = 0.03; GC: OR = 0.80,95% CI = 0.656− 0.991, p = 0.04) are common 
metabolites of EC and GC. Among them, phosphate-to-alanine ratio are risk factor for GC and EC, while bilirubin (Z,Z) to androsterone gluc-
uronide are protective factors for GC and EC. Our findings are summarised in Figures 2 and 3. However, neither the MR-Egger intercept test 
nor Cochran's Q test revealed pleiotropy and heterogeneity (Supplementary Tables 1 and 2).

Discussion

MR has become a pivotal tool for demonstrating potential causal risk factors in diseases. In the present study, we used MR to establish an 
inverse causal relationship between metabolites and UGI cancers. 
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Table 1. Causal estimation between metabolites and EC.

Exposure Method nsnp pval or or_lci95 or_uci95

Gentisate levels IVW 4 0.038586 1.001446 1.000076 1.002819

Hexanoylcarnitine levels (Biocrates platform) IVW 3 0.027575 1.000552 1.000061 1.001044

Homocitrulline levels IVW 2 0.028067 1.002321 1.00025 1.004398

Propionylglycine levels IVW 2 0.013841 0.997617 0.995724 0.999514

Octanoylcarnitine (c8) levels IVW 3 0.049033 1.000545 1.000002 1.001088

Gamma-glutamylmethionine levels IVW 5 0.014381 0.998393 0.997108 0.99968

N2,n2-dimethylguanosine levels IVW 2 0.014332 1.002466 1.000492 1.004444

Hexanoylglycine levels IVW 2 0.021041 1.000855 1.000129 1.001581

Dimethylarginine (sdma + adma) levels IVW 2 0.04918 0.998269 0.996547 0.999994

Hexanoylglutamine levels IVW 5 0.026742 1.000773 1.000089 1.001458

Cis-4-decenoylcarnitine (C10:1) levels IVW 4 0.045316 1.000542 1.000011 1.001072

Nonanoylcarnitine (C9) levels IVW 3 0.039281 1.000582 1.000029 1.001136

1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) levels IVW 2 0.027394 1.001753 1.000195 1.003312

Nisinate (24:6n3) levels IVW 3 0.008633 1.001742 1.000442 1.003045

Dihomo-linolenoylcarnitine (C20:3n3 or 6) levels IVW 2 0.002193 0.997049 0.995165 0.998936

Arachidonoylcarnitine (C20:4) levels IVW 3 0.001527 0.997315 0.995658 0.998975

3-hydroxybutyroylglycine levels IVW 4 0.016788 0.998206 0.996738 0.999676

N-acetyl-isoputreanine levels IVW 4 0.031588 0.998479 0.997094 0.999866

Methyl vanillate sulfate levels IVW 2 0.016476 1.002051 1.000374 1.003731

4-methylhexanoylglutamine levels IVW 6 0.023752 1.000855 1.000114 1.001597

Branched-chain, straight-chain, or cyclopropyl 12:1 fatty acid levels IVW 2 0.0229 1.00252 1.000349 1.004696

Ceramide (d18:1/16:0) levels IVW 3 0.040343 1.001651 1.000073 1.003231

Trans-urocanate levels IVW 2 0.005697 1.0029 1.000843 1.00496

Caproate (6:0) levels IVW 2 0.035751 1.001099 1.000073 1.002125

Nonadecanoate (19:0) levels IVW 2 0.00211 1.003191 1.001155 1.005231

X-18886 levels IVW 2 0.010824 0.997854 0.996207 0.999504

(Continued)
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Table 1. Causal estimation between metabolites and EC.

X-21733 levels IVW 2 0.000775 1.003113 1.001297 1.004933

X-24418 levels IVW 5 0.035589 1.001148 1.000077 1.00222

X-25957 levels IVW 2 0.031283 1.001968 1.000177 1.003762

X-25519 levels IVW 2 0.031996 1.002132 1.000183 1.004084

N-acetyltyrosine levels IVW 4 0.039919 0.999656 0.999328 0.999984

Alpha-ketoglutarate to succinate ratio IVW 2 0.028957 0.997751 0.995737 0.999769

Phosphate to alanine ratio IVW 3 0.018051 1.002041 1.000349 1.003735

Phosphate to phosphoethanolamine ratio IVW 3 0.027151 0.998304 0.996802 0.999808

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-
glycerol (18:2 to 20:4) [2] ratio

IVW 2 0.024901 1.002207 1.000278 1.004139

Glycine to phosphate ratio IVW 2 0.019122 0.997637 0.995664 0.999613

Adenosine 5′-monophosphate (AMP) to citrate ratio IVW 2 0.035565 0.997906 0.995958 0.999859

Adenosine 5′-monophosphate (AMP) to isoleucine ratio IVW 4 0.010368 0.998188 0.996805 0.999573

Adenosine 5′-monophosphate (AMP) to valine ratio IVW 3 0.041684 0.998147 0.996367 0.99993

Cysteinylglycine to taurine ratio IVW 2 0.018044 0.997386 0.995225 0.999552

Cortisone to 4-cholesten-3-one ratio IVW 3 0.026977 1.001789 1.000204 1.003376

Alpha-ketoglutarate to trans-4-hydroxyproline ratio IVW 4 0.035469 1.001519 1.000103 1.002937

Phosphate to EDTA ratio IVW 3 0.033036 1.001788 1.000144 1.003436

Bilirubin (Z,Z) to androsterone glucuronide ratio IVW 5 0.038551 0.998749 0.997565 0.999934

Table 2. Causal estimation between metabolites and GC.

Exposure Method nsnp pval or or_lci95 or_uci95

Catechol sulfate levels IVW 2 0.018879 0.595349 0.386149 0.917885

4-hydroxyglutamate levels IVW 2 0.018322 0.811457 0.682149 0.965276

Gamma-CEHC glucuronide levels IVW 2 0.001425 0.301233 0.144108 0.629677

Carnitine C14:1 levels IVW 2 0.019502 0.358908 0.151902 0.848017

Sphingomyelin (d18:0/20:0, d16:0/22:0) levels IVW 2 0.007016 0.455139 0.256816 0.806613

2,4-di-tert-butylphenol levels IVW 3 0.02333 0.525574 0.301443 0.916352

(Continued)

(Continued)
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Table 2. Causal estimation between metabolites and GC.

X-24295 levels IVW 2 0.020172 0.663254 0.469066 0.937834

X-24337 levels IVW 6 0.044879 1.271046 1.005489 1.606738

Bilirubin degradation product, C17H18N2O4 (1) levels IVW 2 0.021045 1.621617 1.075457 2.445138

Adenosine 5′-monophosphate (AMP) to phenylalanine ratio IVW 2 0.004944 0.652417 0.484378 0.878752

Phosphate to alanine ratio IVW 3 0.01309 1.24341 1.046835 1.476897

Uridine to pseudouridine ratio IVW 2 0.019666 0.718572 0.544341 0.948571

Adenosine 5′-monophosphate (AMP) to tryptophan ratio IVW 2 0.006357 0.640254 0.464796 0.881948

Alanine to asparagine ratio IVW 2 0.024378 0.810625 0.675198 0.973214

Bilirubin (Z,Z) to androsterone glucuronide ratio IVW 2 0.041506 0.806659 0.656101 0.991767

Figure 2. Causal estimation between metabolites and EC.

Figure 3. Causal estimation between metabolites and GC.

The nexus between metabolites and cancer has garnered significant attention recently. The development and progression of cancer are 
intrinsically linked to cellular metabolism. Cancer cells often exhibit unique metabolic pathways, such as relying on glycolysis and lactic acid 
fermentation for glucose metabolism instead of mitochondrial pathways [29]. Additionally, tumours may reprogram lipid metabolism, enhanc-
ing lipid uptake and accumulation, which alters the tumour microenvironment, suppresses immune responses and promotes tumour progres-
sion [30]. The complexity of tumour metabolism and the heterogeneous role of metabolites in cancer make this a challenging area of study. 
Metabolites are not only predictors of cancer risk but also play crucial roles in cancer treatment, where reprogramming metabolic pathways 
can help overcome chemotherapy resistance [31, 32]. In our MR analysis, we investigated the associations between serum metabolites and 
the risks of EC and GC. Our findings reveal distinct metabolite profiles associated with these cancers in the European population, as well as 
some common metabolites. This has led to the identification of novel candidate metabolites that may influence the risk of EC and GC. These 
insights offer new avenues for the treatment and management of these cancers, contributing significantly to our understanding of their etiol-
ogy and mechanisms. In our investigation into EC cancer, we identified 44 metabolites related to the disease, while in GC cancer, we identi-
fied 15 related metabolites. Among them, phosphate-to-alanine ratio and bilirubin (Z, Z) to androsterone glucuronide ratio were found to be 
jointly connected to the risk of UGI cancers. Our findings suggest that a high phosphate-to-alanine ratio is linked to an increased risk of UGI 

(Continued)
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cancers, whereas a higher bilirubin (Z, Z) to androsterone glucuronide ratio might act as a protective factor. Phosphate plays an important 
role in cell growth. For example, liver regeneration requires a large amount of phosphate to synthesize nucleotide triphosphate due to DNA 
replication. After hepatectomy, a decrease in phosphate indicates liver cell regeneration and a lack or delay of this decrease suggests impaired 
regeneration [33]. In small-cell lung cancer, diminished serum phosphate has been associated with an abnormal increase in fibroblast growth 
factor 23 [34]. Moreover, phosphates like nicotinamide adenine dinucleotide are central to maintaining redox homeostasis in cancer [35]. For 
instance, in gliomas with functional phosphate and tensin homologs, hypoxia induces endogenous production of cytoplasmic reactive oxygen 
species (ROS) and tumour cell growth by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, contributing to radia-
tion resistance [36]. Lung cancer cells typically exhibit elevated ROS and NADPH levels [37], and NADPH is also associated with pancreatic 
cancer risk [38]. Research by Shi et al [39] indicated that Myoferlin disrupts the redox balance, promotes ROS production and increases the 
ratio of NADPH/NADP+, thereby accelerating the metastasis of GC. These studies corroborate our findings that elevated phosphate levels, 
possibly through increased NADPH production, lead to enhanced ROS production, promoting tumour cell proliferation and metastasis in UGI 
cancers. A critical aspect of cancer cell interaction with their environment involves the exchange of metabolites, especially amino acids [40]. 
A significant portion of metabolic alterations in cancer relates to amino acid metabolism and biosynthesis. Alanine is a non-essential amino 
acid primarily synthesized in the mitochondrial matrix. Alanine aminotransferase competes with pyruvate dehydrogenase (PDH), and PDH 
oxidizes decarboxylation to form acetyl CoA. PDH is responsible for the oxidative decarboxylation of pyruvate to form acetyl CoA, a process 
that is subdued under hypoxic conditions, leading to increased alanine synthesis [41]. In hepatocellular carcinoma, the alanine metabolism 
pathway undergoes significant changes typically marked by a reduction in alanine content [42]. Interestingly, in breast cancer, β- Alanine and 
alanine have the same chemical formula but differ in structure. The increase in their content due to a decrease of 4-aminobutyrate amino-
transferase normally catalyzes β- Alanine into malonic acid semialdehyde, which can be converted into acetyl coenzyme A by simultaneously 
reducing NAD+to NADH [43]. Furthermore, the synthesis of alanine in breast cancer is influenced by the α-ketoglutarate demand, driven by 
pyruvate uptake in the tumour microenvironment [44]. In our study, we also observed a correlation between the high risk of UGI cancers and 
reduced alanine levels, which is consistent with the findings in hepatocellular carcinoma. This suggests that the metabolic pathway of alanine 
in gastrointestinal tumours might follow a similar pattern, with cancer cells potentially absorbing and deaminating alanine to form pyruvate, 
an essential carbon source for synthesizing other compounds. Thus, our results indicate that the phosphate-to-alanine ratio is linked to the 
increased risk of UGI cancers. The interaction between phosphate and alanine and the impact of their relative concentrations could serve as 
a potential predictive biomarker for UGI cancers. Bilirubin, the end product of red blood cell degradation, is categorised into direct bilirubin 
(DBIL) and indirect bilirubin (IBIL). Previous studies have highlighted the antioxidant, anti-inflammatory and anticancer properties of bilirubin, 
especially IBIL [45–47]. In addition, studies have confirmed that high bilirubin is associated with favourable prognosis and lower incidence 
rates in other cancers, including lung, breast and colorectal cancer [48–50]. However, the study by Wei et al [51] found reduced levels of 
total bilirubin (TBIL), DBIL and IBIL in GC patients, leaving the causal relationship between bilirubin reduction and GC unclear. In esophageal 
squamous cell carcinoma, research by Huang et al [52] suggested that elevated preoperative serum bilirubin levels (including non-conjugated 
bilirubin, conjugated bilirubin and TBIL) have been linked to a longer overall OS. Typically, elevated serum bilirubin is an indicator of liver dys-
function [53]. Given the liver’s involvement in multiple metabolic processes, liver cancer patients often experience abnormalities in multiple 
liver function indicators in the late stage. Therefore, composite index ratios like the albumin bilirubin score (ALBI) have been increasingly used 
to evaluate liver cancer prognosis, demonstrating substantial predictive value [54]. ALBI has also been recognised as a prognostic factor for 
GC, EC, colon cancer, pancreatic cancer and non-small cell lung cancer [55–58]. A retrospective study involving 628 patients undergoing radi-
cal gastrectomy for GC showed that those with higher preoperative ALBI levels experienced a significantly higher incidence of postoperative 
complications [59]. Similarly, in patients with ampullary adenocarcinoma undergoing radical pancreaticoduodenectomy, a high preoperative 
TBIL to albumin ratio was identified as an independent protective factor against recurrence [60]. In EC, a higher incidence of postoperative 
anastomotic leakage was observed to be 46.3% in the high ALBI group versus 27.5% in the low ALBI group (p = 0.038) [58].

Steroid hormone metabolism typically activates pathways involved in cell proliferation, survival, migration and invasiveness and is related 
to cancer initiation and progression closely [61]. Androsterone glucuronide, a liver metabolite of a glucosyltransferase-modified steroid 
oestrogen and testosterone, as well as a metabolite of the steroid dihydrotestosterone found in serum, exhibits weaker androgen activity. 
A case-control study on ovarian cancer has revealed that elevated androsterone glucuronide levels lead to an increased risk of non-serious 
ovarian cancer in women [62]. Similarly, another study conducted by Kalogera et al [61, 63] also found significantly increased androsterone 
glucuronide levels in patients with lobular neoplasia compared to those with benign breast disease. Thus, androsterone glucuronide could be 
a valuable marker for assessing the efficacy of endocrine therapy for breast cancer by detecting its concentration in the blood and evaluating 
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total androgen activity in an accurate way [63]. Some studies have shown a weak but positive correlation between the levels of androsterone 
glucuronide and the risk of prostate cancer [61]. Interestingly, Chinese men have lower plasm levels of androsterone glucuronide compared 
to Caucasian males in Western countries [64]. These studies suggest a positive correlation between androsterone glucuronide and the risk 
of hormone-dependent malignant tumours. However, the relationship between androsterone glucuronide and the risk of non-hormone-
dependent malignant tumours remains unclear. In our study, we found that the increase in bilirubin (Z, Z) to androsterone glucuronide ratio 
is a protective factor for UGI cancers. This protective effect is primarily attributed to the anticancer effect of bilirubin. Given the uncertain 
relationship between androsterone glucuronide and non-hormone-dependent malignant tumours, it is possible that androsterone glucuro-
nide contributes to the risk of EC and GC. However, bilirubin's anticancer effects likely outweigh any potential risks posed by androsterone 
glucuronide. The synergistic effect of bilirubin’s anticancer properties and the potential protective role of androsterone glucuronide suggests 
that an increased bilirubin (Z, Z) to androsterone glucuronide ratio may improve the prognosis of EC and GC. Further research is necessary 
to elucidate the specific underlying mechanisms.

Limitations

This study is subject to several limitations. First, the metabolomic profiles were derived from non-fasting plasma samples. Although cor-
rections were made considering the time since last eating or drinking, residual variances that have not been accounted for could remain. 
Second, the investigation concentrated on gene-metabolite associations that are currently supported by gene expression data and biological 
knowledge, with a particular emphasis on those involving effector genes. This approach may overlook the potential significance of other 
metabolites or metabolic ratios that, despite their strong heritability, were not the primary focus of this study. To uncover the effector genes 
corresponding to these additional metabolites and ratios, future studies will need to integrate more comprehensive gene expression data 
and a deeper understanding of metabolic pathways. Third, our study's implementation of MR was limited by the fact that the majority of 
metabolites and their corresponding ratios were linked to only one IV. This restriction prevented us from using several sensitivity analyses, 
such as MR-Egger regression, which requires multiple IVs for robustness checks against potential biases like horizontal pleiotropy. Neverthe-
less, we sought to minimize the impact of horizontal pleiotropy by selecting IVs that are closely associated with specific effector genes known 
to directly influence metabolite concentrations. We also manually examined instances of metabolic pleiotropy and excluded IVs that affected 
multiple metabolites not part of the same biological pathway. Although these measures aimed to curtail bias, we recognize that it cannot be 
entirely ruled out due to current limitations in metabolomic profiling and incomplete data on metabolite-protein interactions. Future studies 
with a more exhaustive analysis of the metabolome will be vital for a more precise delineation of genetic impacts on metabolites.

Moreover, the demographic scope of this study was largely confined to older adults of European ancestry. Broadening the research to include 
a wider range of ages and ethnic backgrounds will be instrumental in validating and extending the applicability of our findings regarding 
genetic variations in metabolites and their ratios across different populations. Furthermore, our study lacks SNP, using a single SNP as an 
instrument in MR studies can lead to weak instrument bias, where the instrument is not sufficiently associated with the exposure, leading to 
imprecise estimates and potentially biased results.

Conclusion

In this MR study, we scrutinized the causal links between metabolite ratios and the risk of UGI cancers. Our rigorous analysis identified two 
critical metabolic ratios, the phosphate-to-alanine ratio and the bilirubin-to-androsterone glucuronide ratio, as significant players in the con-
text of UGI cancers. The results suggest a potential risk relationship with an increased phosphate-to-alanine ratio, hinting at disruptions in 
energy metabolism and amino acid balance that may contribute to cancer development. Conversely, a higher bilirubin-to-androsterone gluc-
uronide ratio appears to be associated with a reduced risk of UGI cancers, possibly reflecting the protective antioxidative effects of bilirubin 
and the influence of steroid hormone metabolism. These findings provide a promising step forward in understanding the metabolic underpin-
nings of UGI cancers and highlight the utility of MR in uncovering potential biomarkers for disease risk. While these results are encouraging, 
further investigation is essential to confirm these relationships and to explore their clinical implications. Ultimately, understanding these hub 
metabolites could lead to improved strategies for prevention, early detection and targeted treatment of UGI cancers.
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Supplementary material

Supplementary Table 1. The pleiotropy of causal relationship between all metabolites and esophageal cancer.

Exposure Egger_intercept se pval

Gentisate levels 1.24E-05 0.000176497 0.9503632

Hexanoylcarnitine levels (Biocrates platform) 3.70E-05 0.000250697 0.90679916

Homocitrulline levels

Propionylglycine levels

Octanoylcarnitine (c8) levels −4.97E-05 0.000229692 0.864228296

Gamma-glutamylglycine levels

N2,n2-dimethylguanosine levels

Hexanoylglycine levels

Dimethylarginine (sdma + adma) levels

Hexanoylglutamine levels −2.42E-05 0.000167001 0.894008433

Cis-4-decenoylcarnitine (C10:1) levels −8.11E-06 0.000124949 0.95415757

Nonanoylcarnitine (C9) levels −9.74E-06 0.000238869 0.974057642

1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) levels 0.000102248 0.000216733 0.719371536

Nisinate (24:6n3) levels −0.000114913 0.000496313 0.855153197

Dihomo-linolenoylcarnitine (C20:3n3 or 6) levels

Arachidonoylcarnitine (C20:4) levels −0.000170963 0.00021786 0.576415525

3-hydroxyoleoylcarnitine levels 0.000352436 0.000286707 0.434759346

N-acetyl-isoputreanine levels 7.34E-05 0.000235257 0.784515943

Methyl vanillate sulfate levels

4-methylhexanoylglutamine levels −0.000210567 0.000163812 0.268020447

Branched-chain, straight-chain, or cyclopropyl 12:1 fatty acid levels

Ceramide (d18:1/16:0) levels 4.28E-05 0.000186666 0.856671636

Trans-urocanate levels

Caproate (6:0) levels

Nonadecanoate (19:0) levels

X-18886 levels

X-21733 levels

X-24418 levels −0.000237333 0.000518479 0.678251784

X-25957 levels

(Continued)
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Supplementary Table 1. The pleiotropy of causal relationship between all metabolites and esophageal cancer.

N-acetyltyrosine levels −2.69E-05 0.000151417 0.875556823

Alpha-ketoglutarate to succinate ratio

Phosphate to alanine ratio 0.000176286 0.000228167 0.581219102

Phosphate to phosphoethanolamine ratio −0.000366552 0.000272115 0.406542922

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-
glycerol 
(18:2 to 20:4) [2] ratio

Glycine to phosphate ratio

Adenosine 5′-monophosphate (AMP) to citrate ratio

Adenosine 5′-monophosphate (AMP) to isoleucine ratio −0.000279944 0.000237009 0.35896969

Adenosine 5′-monophosphate (AMP) to valine ratio −0.000279482 0.000235303 0.445499084

Cysteinylglycine to taurine ratio

Cortisone to 4-cholesten-3-one ratio −0.00022983 0.000323003 0.606295739

Alpha-ketoglutarate to trans-4-hydroxyproline ratio 0.000150662 0.000198571 0.527237598

Phosphate to EDTA ratio 0.000227554 0.000217679 0.485882116

Bilirubin (Z,Z) to androsterone glucuronide ratio −6.72E-05 0.000171369 0.721325827

Supplementary Table 2. The heterogeneity of causal relationship between all metabolites and esophageal cancer.

Exposure Method Q Q_df Q_pval

Gentisate levels IVW 1.414904 3 0.702045

Hexanoylcarnitine levels (Biocrates platform) IVW 1.029527 2 0.597642

Propionylglycine levels IVW 0.010371 1 0.918884

Octanoylcarnitine (c8) levels IVW 0.092124 2 0.954983

Gamma-glutamylthreonine levels IVW 1.643063 4 0.801032

N2,n2-dimethylguanosine levels IVW 0.07995 1 0.777366

Hexanoylglycine levels IVW 0.106043 1 0.744695

Dimethylarginine (sdma + adma) levels IVW 0.157792 1 0.691198

Hexanoylglutamine levels IVW 0.082255 4 0.999177

Cis-4-decenoylcarnitine (C10:1) levels IVW 0.150189 3 0.985199

Nonanoylcarnitine (C9) levels IVW 0.029438 2 0.985389

1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) levels IVW 0.903521 2 0.636507

(Continued)
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Supplementary Table 2. The heterogeneity of causal relationship between all metabolites and esophageal cancer.

Nisinate (24:6n3) levels IVW 0.291147 2 0.864526

Dihomo-linolenoylcarnitine (C20:3n3 or 6) levels IVW 0.161271 1 0.687989

Arachidonoylcarnitine (C20:4) levels IVW 0.869377 2 0.647466

3-hydroxyoleoylcarnitine levels IVW 4.646325 2 0.097963

N-acetyl-isoputreanine levels IVW 0.854561 3 0.836377

Methyl vanillate sulfate levels IVW 1.391044 1 0.238229

4-methylhexanoylglutamine levels IVW 3.63197 5 0.60352

Branched-chain, straight-chain, or cyclopropyl 12:1 fatty acid levels IVW 0.948363 1 0.330136

Ceramide (d18:1/16:0) levels IVW 0.157398 2 0.924318

Trans-urocanate levels IVW 0.933185 1 0.334037

Caproate (6:0) levels IVW 0.347583 1 0.555484

Nonadecanoate (19:0) levels IVW 0.006784 1 0.934355

X-18886 levels IVW 0.283655 1 0.594316

X-21733 levels IVW 0.117327 1 0.731952

X-24418 levels IVW 2.540923 4 0.637323

X-25957 levels IVW 0.02632 1 0.871121

N-acetyltyrosine levels IVW 1.578843 3 0.664197

Alpha-ketoglutarate to succinate ratio IVW 0.070626 1 0.790428

Phosphate to alanine ratio IVW 0.790348 2 0.673563

Phosphate to phosphoethanolamine ratio IVW 1.823215 2 0.401878

Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-
glycerol (18:2 to 20:4) [2] ratio

IVW
0.011637 1 0.914094

Glycine to phosphate ratio IVW 0.203197 1 0.652153

Adenosine 5′-monophosphate (AMP) to citrate ratio IVW 0.075328 1 0.783732

Adenosine 5′-monophosphate (AMP) to isoleucine ratio IVW 2.094438 3 0.553039

Adenosine 5′-monophosphate (AMP) to valine ratio IVW 2.305697 2 0.315736

Cysteinylglycine to taurine ratio IVW 0.69657 1 0.403939

Cortisone to 4-cholesten-3-one ratio IVW 0.726605 2 0.695376

Alpha-ketoglutarate to trans-4-hydroxyproline ratio IVW 2.415661 3 0.490726

Phosphate to EDTA ratio IVW 1.149102 2 0.562958

Bilirubin (Z,Z) to androsterone glucuronide ratio IVW 2.28896 4 0.68278

(Continued)
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Supplementary Table 3. The pleiotropy of causal relationship between all metabolites and gastric cancer.

Exposure Egger_intercept se pval

Catechol sulfate levels

4-hydroxyglutamate levels

Gamma-CEHC glucuronide levels

Carnitine C14:1 levels

Sphingomyelin (d18:1/20:1, d18:2/20:0) levels

2,4-di-tert-butylphenol levels −0.105602428 0.264966966 0.758558613

X-24295 levels

X-24337 levels −0.020014927 0.03841537 0.62987063

Bilirubin degradation product, C17H18N2O4 (1) levels

Adenosine 5′-monophosphate (AMP) to phenylalanine ratio

Phosphate to alanine ratio 0.013133583 0.018398392 0.605323144

Uridine to pseudouridine ratio

Adenosine 5′-monophosphate (AMP) to tryptophan ratio

Alanine to asparagine ratio

Bilirubin (Z,Z) to androsterone glucuronide ratio

Supplementary Table 4. The heterogeneity of causal relationship between all metabolites and gastric cancer.

Exposure Method Q Q_df Q_pval

Catechol sulfate levels IVW 1.064121 1 0.302277

4-hydroxyglutamate levels IVW 0.00116 1 0.97283

Gamma-CEHC glucuronide levels IVW 0.275868 1 0.599422

Carnitine C14:1 levels IVW 0.066075 1 0.79714

Sphingomyelin (d18:0/20:0, d16:0/22:0) levels IVW 0.234892 1 0.62792

2,4-di-tert-butylphenol levels IVW 0.386574 2 0.824245

X-24295 levels IVW 0.161678 1 0.687616

X-24337 levels IVW 0.644154 5 0.985893

Bilirubin degradation product, C17H18N2O4 (1) levels IVW 0.081743 1 0.77495

Phosphate to alanine ratio IVW 0.52519 2 0.769053

Uridine to pseudouridine ratio IVW 0.634094 1 0.425858

Adenosine 5′-monophosphate (AMP) to tryptophan ratio IVW 0.108693 1 0.741637

Alanine to asparagine ratio IVW 0.44321 1 0.505577

Bilirubin (Z,Z) to androsterone glucuronide ratio IVW 0.321286 1 0.570836
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A B

C D

Supplementary Figure 1. A-B: CCK-8 method was used to detect the proliferation of KYSE150 and HGC27 cells. Divide different cell lines into three 
groups and treat the cells with different concentrations of alanine (0, 50, 100 μ M). Measure the absorbance values of cells at different time points (0, 24, 
48, 72 hours) using the CCK-8 method, and evaluate the proliferation of cells through plotting. C-D: Scratch assay for detecting the migration of KYSE150 
and HGC27 cells. KYSE150 and HGC27 cells were treated with different concentrations of alanine for 24 and 48 hours, and the scratch area at different 
time points was calculated to evaluate the migration ability of the cells. All experiments were repeated 3 times, and the results were expressed as mean ± 
SDs. Compared with the control group, there was no significant difference in ns, with * * p < 0.05, p < 0.01, * * * p < 0.005, * * * * < 0.001 
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