Efficacy and safety of trifluridine/tipiracil plus bevacizumab across different subgroups of patients with refractory colorectal cancer: a meta-analysis

Luís Felipe Leite da Silva¹, Erick Figueiredo Saldanha², Lucas Diniz da Conceição^{1,a} (b), Wolney de Andrade Martins³, Ronaldo Altenburg Gismondi¹, Erito Marques de Souza Filho^{3,4} and Renata D'Alpino Peixoto^{5,6}

¹Department of Internal Medicine, Federal Fluminense University, Rio de Janeiro 24070-090, Brazil

²Division Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada

³Department of Cardiovascular Sciences, Federal Fluminense University, Rio de Janeiro 24070-090, Brazil

⁴Department of Languages and Technology, Federal Rural University of Rio de Janeiro, Rio de Janeiro 2669 5661, Brazil

⁵Medical Oncology Department, BC Cancer Agency, Vancouver V5Z 4E6, Canada

⁶Instituto Oncoclínicas, Rio de Janeiro 22250-905, Brazil

^ahttps://orcid.org/0009-0004-4397-5200

Abstract

Introduction: Metastatic colorectal cancer (mCRC) patients who are refractory to initial treatment lines exhibit a challenging clinical scenario characterised by a poor prognosis and constrained therapeutic options. This systematic review and meta-analysis assess the integration of bevacizumab into trifluridine-tipiracil (TFD/TPI) therapy for mCRC, examining its benefits across patient subgroups and evaluating safety relative to TFD/TPI monotherapy.

Materials and methods: Following preferred reporting items for systematic reviews and meta-analysis statements, we conducted a thorough literature search from 15 October to 11 November 2023, covering MEDLINE, Embase and the Cochrane database. Data extraction and quality assessment followed Cochrane guidelines, and hazard or odds ratios with 95% confidence intervals (CI) were pooled (p < 0.05 significance threshold). The study protocol is registered in PROSPERO (CRD42023484695).

Results: Analysing 770 database results, we included two randomised controlled trials and five observational studies covering over 4,000 patients. Combined therapy exhibited significant improvements in overall survival (OS) hazard ratios (HR 0.60; 95% CI 0.49–0.72; p < 0.01) and progression-free survival (HR 0.48; 95% CI 0.40–0.59; p < 0.01). Subgroups, including prior bevacizumab exposure (HR 0.70; 95% CI 0.64–0.77; p < 0.01) and mutated RAS gene (HR 0.64; 95% CI 0.53–0.77; p < 0.01), demonstrated improvements in OSwith bevacizumab.

Conclusion: This meta-analysis underscores the heightened efficacy of TFD/TPI combined with bevacizumab for refractory mCRC compared to TFD/TPI monotherapy across diverse subgroups. Combined therapy has increased grade \geq 3 neutropenia and hypertension, while monotherapy is associated with fatigue and anemia.

Keywords: colorectal cancer, refractory metastatic colorectal cancer, bevacizumab, trifluridine-tipiracil, meta-analysis

Correspondence to: Luís Felipe Leite da Silva Email: luis_leite@id.uff.br

ecancer 2024, 18:1728 https://doi.org/10.3332/ecancer.2024.1728

Published: 10/07/2024 Received: 23/03/2024

Publication costs for this article were supported by ecancer (UK Charity number 1176307).

Copyright: © the authors; licensee ecancermedicalscience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://</u> <u>creativecommons.org/licenses/by/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and is the second leading cause of cancer-related death globally [1, 2]. In the span of the last 20 years, substantial improvement in the understanding of the CRC molecular features and the incorporation of precision oncology has translated to a significant improvement in overall survival (OS) for metastatic CRC (mCRC) [3, 4] patients, with clinical trials reporting a median OS of 30 months [5]. In fact, an increasing number of patients maintain acceptable function status and are eligible to receive a third line of systemic treatment after presenting disease progression following two lines of standard-of-care treatment [6, 7]. However, treatment options for this heterogeneous cohort of patients are limited, and survival outcomes remain poor [8].

Currently, available treatment options for refractory mCRC patients are trifluridine-tipiracil (TFD/TPI) [9], reintroduction or rechallenge of previous treatments such as epidermal growth factor (EGFR) inhibitors plus chemotherapy [10, 11], vascular endothelial growth factor (VEGF) target therapy such as regorafenib [12] and fruquintinib [13]. More recently, studies have reported promising results, revealing a 6-week progression-free survival (PFS) of 42.9% [80% confidence interval (CI) 27.8–59.0] with the addition of the anti-VEGF antibody bevacizumab to TFD/TPI [14, 15]. The same combination was evaluated in phase 3 randomised clinical trials (RCTs) [16] versus TFD/TPI monotherapy, showing improvement in OS of 10.8 versus 7.5 months hazard ratios (HR: 0.61, 95%CI 0.49–0.77) and PFS of 5.6 versus 2.4 months (HR: 0.44, 95%CI 0.36–0.54) [17]. Consequently, the incorporation of bevacizumab into TFD/TPI therapy is currently recommended as the standard of care for these patients [18].

Notably, despite the incorporation of new drugs into the pipeline of advanced CRC treatment, the vast majority of patients with chemotherapy-refractory mCRC will not derive survival benefits. Therefore, we conducted a systematic review and meta-analysis to evaluate the efficacy of TFD/TPI plus bevacizumab compared to TFD/TPI monotherapy for chemotherapy-refractory mCRC, exploring subgroup populations based on RAS mutation status, tumour location, Eastern Cooperative Oncologic Group (ECOG) performance status, previous use of bevacizumab and to address the adverse effects associated with either option.

Materials and methods

Eligibility criteria

Studies fulfilling the following criteria were included: (1) RCTs or nonrandomised studies; (2) direct comparison between TFD-TPI monotherapy or its combination with bevacizumab; (3) enrollment of patients with confirmed CRC diagnosis and previous lines of treatment; (4) a minimum follow-up period of 3 months. Only studies presenting extractable data on OS or PFS were considered eligible for inclusion.

Conversely, studies were excluded if they fell under the following categories: (1) limited to abstracts without full-text availability; (2) inefficacy in assessing the intended outcome; and (3) inclusion of patients who had not undergone previous treatment lines. The study protocol is registered in PROSPERO (CRD42023484695).

Search strategy and data extraction

This systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA) [19]. We systematically searched MEDLINE, Embase and the Cochrane database until 11 October 2023, with the following keywords such as 'CRC', 'TFD/TPI', 'bevacizumab' and 'TAS-102'. Two authors (LF, LD) independently screened titles, abstracts and full-text publications for study eligibility, with any disagreement resolved by discussion. No restrictions were imposed based on language or publication date.

Endpoints and subgroup analysis

The efficacy outcomes assessed in this study encompassed OS and PFS. Safety outcomes of interest involved the recording of Common Terminology Criteria for Adverse Events (CTCAE), all-grade adverse events, and grade \geq 3 adverse events, which were reported in at least three of the included studies. It is noteworthy that the definitions of PFS and OS remained consistent across all studies included in the analysis.

To explore potential variations among different patient subgroups, we conducted the extraction of results specifically focused on subgroups of interest. Predetermined sub-analyses involved the isolation of data pertaining to (1) RAS mutation status, (2) primary tumour location (PTL), (3) prior administration of bevacizumab and (4) ECOG performance status.

Quality assessment

Quality assessment was performed for each complete article. For randomised studies, we supplemented the assessment of quality whenever feasible by referencing additional documentation. Nonrandomised studies were evaluated using the ROBINS-1 tool [20] to gauge the risk of bias. The assessment of bias risk in the reviewed randomised studies was conducted by two authors employing the RoB-2 tool [21], as recommended by the Cochrane Collaboration [22] for appraising bias in randomised trials. Bias risk was evaluated for the outcome of OS, guided by the signaling questions of the RoB 2 tool. To explore potential publication bias, we conducted a thorough investigation utilising funnel-plot analysis of point estimates based on study weights and employed Egger's regression test [23].

Statistical analysis

HR or odds ratios (OR), accompanied by 95% CI, were derived using the Mantel-Haenszel test [24] and inverse-variance methodologies to compare treatment effects. The DerSimonian and Laird [25] random-effects models were employed to address study heterogeneity. Statistical analyses were performed utilising Review Manager (RevMan) 5.424 [26] and Rstudio version R-4.3.125 [27], with significance set at p < 0.05.

Statistical heterogeneity was appraised using the Cochran Q test, l^2 statistics and Tau-square via the restricted maximum-likelihood estimator. Inter-study variability was assessed using l^2 metrics and Cochran's Q test, categorising values below 25% or p > 0.10 as indicative of low heterogeneity, between 25% and 50% as moderate, and exceeding 50% as high heterogeneity [28]. Multiple sensitivity analyses were executed to scrutinize potential sources of heterogeneity and ascertain the robustness of the primary findings. The leave-one-out method was applied, systematically excluding individual study estimates one by one to gauge their impact on effect-size estimates and heterogeneity. Furthermore, for the primary efficacy outcomes, a fixed-effect meta-analysis was conducted to ensure consistency with the random-effect model. Additionally, a separate pooling of RCTs and observational studies was performed to investigate the potential impact of study design on overall HR.

Results

Study characteristics and TFD/TPI plus bevacizumab versus TFD/TPI efficacy

Following the initial search, 770 records were identified. Upon removal of duplicate entries and exclusion of ineligible studies, 43 records underwent thorough assessment against the inclusion and exclusion criteria. Ultimately, 7 studies met the criteria for inclusion in the analysis [16, 17, 29–33], encompassing 4,675 patients included for efficacy analysis, consisting of 2 RCTs and 5 retrospective observational studies. Among these patients, 2,331 (49%) received TFD-TPI in combination with bevacizumab, while 2,344 (51%) were administered TFD-TPI monotherapy (control). The median follow-up ranged from 7.1 to 25.3 months. Although the definitions of interventions and efficacy outcomes were largely consistent across studies, variations were observed in the versions of the CTCAE utilised by some studies. Key characteristics of the main studies are summarised in Table 1.

Baseline characteristics	Prager, G 2023	Pfeiffer, P 2020	Kotani, D 2019	Fuji, H 2019ª	Nose, Y 2020	Chida, K 2021	Kagawa, Y 2023
design	RCT, multicenter	RCT, multicenter	Observational	Observational	Observational	Observational	Observational
Intervention	TFD/TPI	TFD/TPI	TFD/TPI	TFD/TPI	TFD/TPI	TFD/TPI	TFD/TPI ^a
Control	TFD/TPI and Bev						
Age, years							
Median	64/62	67/64	65/60	66/67	70/73	65/61	68/68
≥65 (n)	117/100	NA	34/19	NA	NA	NA	1,125/1126
Sex							
Female	112/124	17/22	24/25	14/13	9/16	61/52	755/753
Male	134/122	30/24	42/35	7/8	15/16	92/87	1,032/1034
ECOG OS							
0	106/119	NA	42/35	NA	7/12	95/98	NA
1	139/127	NA	21/24	NA	15/19	53/39	NA
No. of metastatic sites							
1 or 2	141/152	NA	52/32	NA	NA	107/90	1,472/1451
≥3	105/94	NA	14/28	NA	NA	46/49	315/336
PTL							
Right	77/62	11/11	10/11	14/14	18/22	32/30	446/469
Left	169/184	36/35	56/49	7/7	6/10	121/109	1,241/1198
RAS status							
Mutaded	170/171	29/27	36/32	9/11	10/17	91/76	NA
Wild-type	76/75	18/19	30/28	12/10	14/14	NA	NA
BRAF status							
Mutaded	11/8	0/2	4/3	NA	NA	7/5	NA
Wild-type	156/159	38/36	52/52	NA	NA	NA	NA
Unknown	79/79	9/8	10/5	NA	NA	NA	NA
Previous treatment lines							
1 or 2	239/240	20/21	35/33	NA	NA	NA	NA
≥3	7/6	27/25	31/27	NA	NA	NA	NA

Table 1. Study characteristics and patient demographics from included trials.

^aData from the propensity score matching cohort. Baseline characteristics of included studies. Data is presented in the format of patients that received TFD/TPI monotherapy/ TFD/TPI + Bevacizumab; NA: not available; RCT: randomized controlled trial; ECOG PS: Eastern Cooperative Oncology Group performance status

In the cohort receiving TFD/TPI combined with bevacizumab, there was an overall observable trend indicating a notable enhancement in OS (HR 0.60; 95% CI 0.49–0.72; p < 0.01; $l^2 = 56\%$; Figure 1A). A sensitivity analysis conducted through iterative exclusion of individual studies revealed that the observed high heterogeneity was predominantly attributed to a single study [33], yet this did not

Safety profile of TFD/TPI plus bevacizumab versus monotherapy

In the analysis of Grade \geq 3 adverse events (Table 2 and Figure 2A), the incidences of vomiting (OR 0.50; 95% CI 0.12–2.01; p = 0.32; $l^2 = 0\%$, Table 3), nausea (OR 1.14; 95% CI 0.39–3.30; p = 0.81; $l^2 = 0\%$), diarrhea (OR 0.52; 95% CI 0.11–2.45; p = 0.41; $l^2 = 30\%$) and thrombocytopenia (OR 1.69; 95% CI 0.84–3.40; p = 0.14; $l^2 = 0\%$) did not exhibit significant differences between the treatment groups. However, there was a notable increase in Grade \geq 3 neutropenia with the addition of bevacizumab (OR 1.92; 95% CI 1.08–3.40; p = 0.03; $l^2 = 72\%$), while monotherapy showed higher odds of fatigue (OR 0.35; 95% CI 0.15–0.84; p = 0.02; $l^2 = 0\%$) and anemia (OR 0.44; 95% CI 0.29–1.66; p < 0.01; $l^2 = 0\%$).

For all-grade adverse events, the rates of diarrhea (OR 1.09; 95% CI 0.76–1.55; p = 0.65; $l^2 = 42\%$), fatigue (OR 1.12; 95% CI 0.84–1.50; p = 0.43; $l^2 = 0\%$), nausea (OR 1.08; 95% CI 0.67–1.75; p = 0.74; $l^2 = 74\%$), neutropenia (OR 1.44; 95% CI 0.92–2.26; p = 0.10; $l^2 = 39\%$, Table 2) and vomiting (OR 1.28; 95% CI 0.88–1.85; p = 0.19; $l^2 = 0\%$) did not significantly differ between the addition of bevacizumab and TFD-TPI monotherapy. Anemia was notably associated with TFD-TPI monotherapy (OR 0.73; 95% CI 0.54–0.99; p = 0.04; $l^2 = 0\%$), while thrombocytopenia was linked to the use of bevacizumab (OR 1.72; 95% CI 1.18–2.50; p < 0.01; $l^2 = 6\%$).

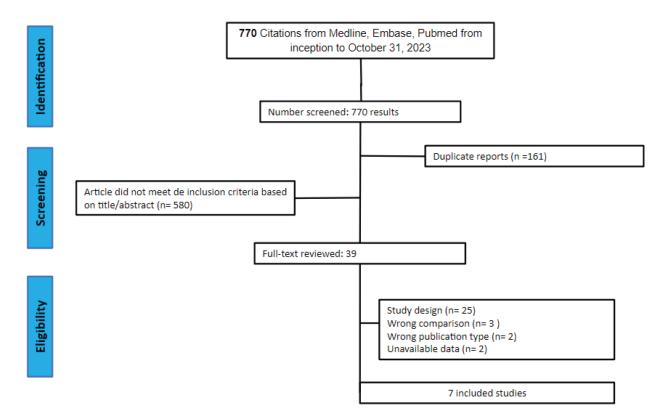


Figure 1. PRISMA flow diagram. PRISMA flow diagram for literature search and selection.

5

All grade	TFD/TPI + BEV (n)	TFD/TPI (n)	OR, IV, 95% CI	p value	I ²
Anemia	420	409	0.73 (0.54; 0.99)	0.04	0%
Neutropenia	420	409	1.44 (0.92; 2.26)	0.10	39%
Thrombocytopenia	420	409	1.72 (1.18; 2.50)	<0.01	6%
Nausea	515	688	1.08 (0.67; 1.75)	0.74	74%
Vomiting	409	421	1.28 (0.88; 1.85)	0.19	0%
Diarrhea	317	588	1.09 (0.76; 1.55)	0.65	42%
Fatigue	2,789	6,909	1.12 (0.84; 1.50)	0.43	0%
Hypertension	2,675	6,812	2.78 (1.56; 4.94)	<0.01	59%

Table 2. All grade adverse events of TFD/TPI monotherapy or combined with bevacizumab.

Pooled results of all grade adverse events. n: number of patients analyzed; IV: inverse variance; CI: confidence interval

Studies	Total	Total	HR	95% CI	Weight		Hazard Randon		CI
Type = RCT									
Pfeiffer, P 2020	46	47	0.55	[0.32: 0.94]	8.8%	_	-		
Prager, G 2023	246		0.61	[0.49: 0.77]			- -		
Total (95% CI)	292	293	0.60	[0.49; 0.74]			+		
Heterogeneity: Tau	² = 0; Ch	2 = 0.14							
Type = Observat	ional								
Chida, K 2021	139	153	0.66	[0.49; 0.88]	17.6%				
Fuji, H 2019	21	21	0.33	[0.15; 0.73]	4.8%	-	-		
Kagawa, Y 2023	1787	1787	0.70	[0.63; 0.78]	28.7%		-+		
Kotani, D 2019	60	66	0.74	[0.48; 1.14]	11.8%		-		
Nose, Y 2020	32	24	0.25	[0.13; 0.48]	6.6%				
Total (95% CI)	2039	2051	0.57	[0.43; 0.76]	69.5%		-		
Heterogeneity: Tau	² = 0.063	4; Chi ² =	12.7, d	f = 4 (P = 0.01);	$l^2 = 68\%$				
					100.0%		•		
Heterogeneity: Tau	$^{2} = 0.029$	3; Chi ² =	13.73,	df = 6 (P = 0.03)	$1^2 = 56\%$		1 1		
Test for overall effe	ct: Z = -5	.37 (P <	0.01)			0.2	0.5 1	2	1
Test for subgroup of				f = 1 (P = 0.74)	TAS-102 +			TAS-10	2

b) Progression-free survival

b) Progres Studies	Total	Total	HR	95% CI	Weight		Haza V, Ranc			I
Type = RCT				Maria Maria						
Pfeiffer, P 2020	46	47	0.45	[0.29; 0.70]	14.6%		-			
Prager, G 2023	246	246	0.44	[0.36; 0.54]	32.3%					
Total (95% CI)	292	293	0.44	[0.37; 0.53]	46.9%		-			
Heterogeneity: Tau	1 ² = 0; Cl	ni ² = 0.01	l, df = 1	(P = 0.93); I ² =	0%					
Type = Observa	tional						1			
Chida, K 2021	139	153	0.57	[0.45; 0.74]	27.4%		-			
Kotani, D 2019	60	66	0.62	[0.42; 0.92]	17.1%		+-	-		
Nose, Y 2020	32	24	0.28	[0.15; 0.52]	8.6%	_	-+			
Total (95% CI)	231	243	0.51	[0.35: 0.73]	53.1%		-			
Heterogeneity: Tau	$1^2 = 0.05$	93; Chi ²	= 4.96, 0	df = 2 (P = 0.08)	$ 1^2 = 60\%$					
Total (95% CI)				[0.40; 0.59]	100.0%		+			
Heterogeneity: Tau	$1^2 = 0.022$	24; Chi ²	= 7.26, 0	df = 4 (P = 0.12)	$ ^2 = 45\%$	1	1	1	1	
Test for overall effe						02	0.5	1	2	1

Figure 2. Efficacy analysis of TFD/TPI monotherapy or combined with bevacizumab. Forest plots of the HR of OS and PFS. Squares are the effect size of the individual studies; diamonds, the summarized effect size; horizontal lines, upper and lower border of 95% CI; p-values> 0.05 are considered statistically significant.

All grade	TFD/TPI + BEV (n)	TFD/TPI (n)	OR, IV (95% CI)	р	l ²
Anemia	467	456	0.44 (0.29; 0.66)	<0.01	0%
Neutropenia	488	492	1.92 (1.08; 3.40)	0.03	72%
Thrombocytopenia	442	445	1.69 (0.84; 3.40)	0.15	0%
Nausea	375	366	1.14 (0.39; 3.30)	0.81	1%
Vomiting	292	293	0.50 (0.12; 2.01)	0.33	0%
Diarrhea	371	364	0.52 (0.11; 2.45)	0.41	30%
Fatigue	360	343	0.35 (0.15; 0.84)	0.02	0%
Hypertension	445	465	5.99 (2.04; 17.58)	<0.01	0%

Table 3. Grade ≥3 adverse events of TFD/TPI monotherapy or combined with bevacizumab.

Pooled results of grade ≥3 adverse events. n: number of patients analyzed; IV: inverse variance; CI: confidence interval

Efficacy of TFD/TPI plus bevacizumab across different subgroups of patients

In the analysis of OS among patients with mutated RAS status, the use of combined therapy exhibited superiority over TFD-TPI monotherapy (HR 0.64; 95% CI 0.53–0.77; p < 0.01; $l^2 = 0\%$, Figure 3A). This trend mirrored the results observed among patients with RAS wild-type status (HR 0.66; 95% CI 0.48–0.90; p < 0.01; $l^2 = 0\%$; Figure 3B). Similarly, the advantageous trend of adding bevacizumab was evident in patients with both right-sided primary tumours (HR 0.66; 95% CI 0.56–0.79; p < 0.01; $l^2 = 0\%$; Figure 3C) and left-sided tumours (HR 0.69; 95% CI 0.56–0.79; p < 0.01; $l^2 = 0\%$; Figure 3C) and left-sided tumours (HR 0.69; 95% CI 0.56–0.79; p < 0.01; $l^2 = 0\%$; Figure 3D). Moreover, individuals exhibiting a performance status of 0 (HR 0.66; 95% CI 0.54–0.82; p < 0.01; $l^2 = 0\%$; Figure 3E), as well as those with a history of prior exposure to bevacizumab (HR 0.70; 95% CI 0.64–0.77; p < 0.01; $l^2 = 0\%$; Figure 3F), manifested a statistically significant improvement in OS when subjected to combined therapeutic interventions, albeit to a lesser extent than observed in patients without prior exposure to bevacizumab (HR 0.51; 95% CI 0.31–0.83; p < 0.01; $l^2 = 53\%$).

Quality assessment

The summary of the quality assessment is outlined in Table 1. Three observational studies exhibited disparities in matching intervention and control patients based on critical baseline characteristics, such as previous use of bevacizumab. Moreover, other studies lost two points in the intervention domain classification due to insufficiently detailed reporting of the intervention and control treatment schemes.

Some evidence indicative of publication bias was observed (Figure S3). The funnel plot displayed a symmetrical distribution of studies with similar weights converging toward the pooled treatment effect size as weights increased, except for the study by Nose *et al* [33], which fell outside the funnel plot in the OS analysis. However, Egger's regression test results indicated no significant evidence of publication bias (p = 0.05 for OS and p = 0.71 for PFS).

Discussion

This systematic review and meta-analysis, encompassing over 4,000 patients, compared TFD/TPI in combination with bevacizumab versus TFD/TPI monotherapy in patients with chemotherapy-refractory mCRC. To the best of our knowledge, this is the first study to compare the combination of TFD/TPI with bevacizumab with TFD/TPI monotherapy across pre-specified subgroups of patients. Our study results demonstrated that the combination of TFD/TPI and bevacizumab significantly improved OS and PFS across the entire cohort. Likewise, the superiority of TFD/TPI with bevacizumab was independent of RAS mutational status, PTL as well as previous exposure to bevacizumab, and ECOG performance status. The safety profile of the association TFD/TPI with bevacizumab, when compared to TFD/TPI monotherapy, revealed an increased risk of grade \geq 3 neutropenia, whereas monotherapy was associated with an increased risk of anemia.

a) RAS mutated

b) RAS wild-type

Study	Total	Total	Weight	HR	95% CI	Hazard Ratio IV, Random, 95% CI	Study	Total	Total	Weight	t HR	95% CI	Hazard Ratio IV, Random, 95% C
Chida, K 2021	76	91	26.6%	0.72	[0.50; 1.04]	_	Kotani, D 2019	28	30	22.9%		[0.35; 1.28]	
Kotani, D 2019	32	36	10.3%	0.79			Pfeiffer, P 2020	19	18	13.2%		[0.46; 2.54]	-
Pfeiffer, P 2020	29	27	10.4%	0.43	[0.24; 0.77]		Prager, G 2023	75	76	63.9%	0.59	[0.40; 0.87]	
Prager, G 2023	171	170	52.7%	0.62	[0.48, 0.81]					100 001			
							Total (95% CI) Heterogeneity: Tau	122		100.0%		[0.48; 0.90]	
Total (95% CI)	308		100.0%			-	Test for overall effe				= 0.45); 1 =	0%	0.5 1
Heterogeneity: Tar Test for overall eff	u" = 0; Ch	1 = 2.73	, df = 3 (P =	0.44); [*	= 0%	05 1 0	reactor overall ene			0.000)		TAS-10	2 + Bevacizumab TAS-102
lest for overall eff	ect Z = -4	4.69 (P <	0.001)		TAC 100	0.5 1 2						140-10	2 + Devacizuitiab 1743-102
) Right si	de tu	mor			TAS-102	2 + Bevacizumab TAS-102	d) Left side	tum	or				
						Hazard Ratio							Hazard Ratio
Study	Total	Total	Weight	HR	95% CI	IV, Random, 95% CI	Study	Total	Total	Weight	HR	95% CI	IV, Random, 95% CI
Chida, K 2021	30	32	7.2%	0.41	[0.22: 0.76]		Chida, K 2021	109	121	7.2%	0.70	[0.52; 0.96]	
Kagawa, Y 2023	469	446	70.1%	0.72	[0.59: 0.88]		Kagawa, Y 2023	1198	1241	44.0%		[0.61: 0.78]	-
(otani, D 2019	11	10	2.4%	0.62	[0.21; 1.83]		Kotani, D 2019	49	56	2.9%		[0.45; 1.16]	
Pfeiffer, P 2020	11	11	2.0%	0.74	[0.23; 2.41]		Pfeiffer, P 2020	36	35	1.9%		[0.29; 0.94]	
Prager, G 2023	62	77	18.4%	0.59	[0.40; 0.87]		Prager, G 2023	1198	1241	44.0%		[0.61; 0.78]	-
-													
otal (95% CI)	583		100.0%		[0.56; 0.79]	•	Total (95% CI)					[0.63; 0.75]	•
leterogeneity: Tau ²				50); l ² =	0%		Heterogeneity: Tau ² Test for overall effect				0.92); 1* = 0	%	
est for overall effect	z = -4.8	30 (P < 0.	.001)		TAC 100	0.5 1 2 + Bevacizumab TAS-102	lest for overall effect	z = -8.	96 (P < 0	.001)		TAC 10	0.5 1 2 2 + Bevacizumab TAS-102
					1A3-102 1							1740-10	
						Devacizanab 170-102							
e) Previou	s use	ofb	evaciz	uma	b	Devaluation The Te	f) Without J	orevi	ous ı	ise of	bevad	izumab	
e) Previou						Hazard Ratio							Hazard Ratio
,	S USE Total	e of b	evaciz _{Weight}	uma _{HR}	95% CI		f) Without ^{Studies}	orevi Total		ISE Of HR	bevac 95% ci		
Study Kagawa, Y 2023	Total 1516	Total 1513	Weight 78.4%	HR 0.70	95% CI	Hazard Ratio				HR		Weight	Hazard Ratio
Study Kagawa, Y 2023 Kotani, D 2019	Total 1516 34	Total 1513 33	Weight 78.4% 4.5%	HR 0.70 0.70	95% CI [0.63; 0.78] [0.45; 1.09]	Hazard Ratio	Studies	Total	Total	HR 0.72	95% CI	Weight 49.4%	Hazard Ratio
Study Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020	Total 1516 34 39	Total 1513 33 36	Weight 78.4% 4.5% 2.7%	HR 0.70 0.70 0.62	95% CI [0.63; 0.78] [0.45; 1.09] [0.35; 1.10] —	Hazard Ratio	Studies Kagawa, Y 2023	Total 95	Total	HR 0.72 [0.30]	95% C	Weight 49.4% 3.8%	Hazard Ratio
Study	Total 1516 34	Total 1513 33	Weight 78.4% 4.5% 2.7%	HR 0.70 0.70	95% CI [0.63; 0.78] [0.45; 1.09]	Hazard Ratio	Studies Kagawa, Y 2023 Kotani, D 2019	Total 95 60	Total 121 66	HR 0.72 [0.30 [0.24]	95% C [0.55; 0.94] [0.03; 3.45]	Weight 49.4% 3.8% 8.3%	Hazard Ratio
Study Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023	Total 1516 34 39 178	Total 1513 33 36 177	Weight 78.4% 4.5% 2.7% 14.4%	HR 0.70 0.70 0.62 0.72	95% CI [0.63; 0.78] [0.45; 1.09] [0.35; 1.10] — [0.56; 0.92]	Hazard Ratio	Studies Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023	Total 95 60 7 68	Total 121 66 11 69	HR 0.72 [0.30 [0.24 [0.40]	95% C [0.55; 0.94] [0.03; 3.45] [0.05; 1.18] [0.25; 0.63]	Weight 49.4% 3.8% 8.3% 38.5%	Hazard Ratio
Study Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023 Total (95% CI)	Total 1516 34 39 178 1767	Total 1513 33 36 177 1759	Weight 78.4% 4.5% 2.7% 14.4% 100.0%	HR 0.70 0.70 0.62 0.72 0.70	95% Cl [0.63; 0.78] [0.45; 1.09] [0.35; 1.10] [0.56; 0.92] [0.64; 0.77]	Hazard Ratio	Studies Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023 Total (95% CI)	Total 95 60 7 68 230	Total 121 66 11 69 267	HR 0.72 [0.30 [0.24 [0.40]	95% Cl (0.55; 0.94) (0.03; 3.45) (0.05; 1.18) (0.25; 0.63) (0.21; 0.83)	Weight 49.4% 3.8% 8.3% 38.5% 100.0%	Hazard Ratio
Study Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020	Total 1516 34 39 178 1767 = 0; Chi ²	Total 1513 33 36 177 1759 = 0.21, d	Weight 78.4% 4.5% 2.7% 14.4% 100.0% if = 3 (P = 0.9	HR 0.70 0.70 0.62 0.72 0.70	95% Cl [0.63; 0.78] [0.45; 1.09] [0.35; 1.10] [0.56; 0.92] [0.64; 0.77]	Hazard Ratio	Studies Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023 Total (95% CI) Heterogeneity: Tau	Total 95 60 7 68 230 = 0.108	Total 121 66 11 69 267 5; Chi ² =	HR 0.72 0.30 0.24 0.40 0.51 [6.33, df =	95% Cl (0.55; 0.94) (0.03; 3.45) (0.05; 1.18) (0.25; 0.63) (0.21; 0.83)	Weight 49.4% 3.8% 8.3% 38.5% 100.0%	Hazard Ratio IV, Random, 95% Cl
Study Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023 Total (95% CI) Heterogeneity: Tau	Total 1516 34 39 178 1767 = 0; Chi ²	Total 1513 33 36 177 1759 = 0.21, d	Weight 78.4% 4.5% 2.7% 14.4% 100.0% if = 3 (P = 0.9	HR 0.70 0.70 0.62 0.72 0.70	95% Cl [0.63; 0.78] [0.45; 1.09] [0.35; 1.10] [0.56; 0.92] [0.64; 0.77]	Hazard Ratio IV, Random, 95% Cl	Studies Kagawa, Y 2023 Kotani, D 2019 Pfeiffer, P 2020 Prager, G 2023 Total (95% CI)	Total 95 60 7 68 230 = 0.108	Total 121 66 11 69 267 5; Chi ² =	HR 0.72 0.30 0.24 0.40 0.51 [6.33, df =	95% Cl (0.55; 0.94) (0.03; 3.45) (0.05; 1.18) (0.25; 0.63) (0.21; 0.83)	Weight 49.4% 3.8% 8.3% 38.5% 100.0%); 1 ² = 53%	Hazard Ratio

Figure 3. OS subgroup analysis of TFD/TPI monotherapy or combined with bevacizumab. Forest plots of the HR of OS in different subgroups. Squares are the effect size of the individual studies; diamonds, the summarized effect size; horizontal lines, upper and lower border of 95% CI; *p*-values> 0.05 are considered statistically significant.

A better understanding of the CRC molecular features and the incorporation of precision oncology have changed the treatment landscape of advanced CRC. Molecular profiling aids the use of targeted biological agents such as anti-EGFR and anti-VEGF, leading to improvement in OS for mCRC patients [34, 35]. The C-TASK FORCE trial [14], by integrating bevacizumab with TFD/TPI, reported a 16-week PFS rate of 42.9% (80% CI 27.8–59.0). These findings were later replicated in the SUNLIGHT trial, which reported a median OS of 10.8 months with the combination of FTD/TPI with bevacizumab [17] compared to 7.5 with TFD/TPI alone. In a post-hoc analysis from the SUNLIGHT study, the trend of FTD/TPI + bevacizumab benefit in OS was observed irrespective of prior bevacizumab usage [36], which is supported by the pooled analysis of this systematic review.

Our study revealed that TFD/TPI plus bevacizumab improved survival for mCRC patients irrespective of RAS mutational status. The addition of bevacizumab to 5-FU-based chemotherapy has been reported to have limited survival benefits in patients with RAS-mutant CRC, and codon-specific RAS mutations may be prognostic for patients on TFD/TPI treatment [37, 38]. However, findings from the SUNLIGHT trial [19] reported consistent survival benefits of the combination TFD/TPI and bevacizumab, irrespective of RASmutational status, aligned with the results observed in our study. Recently reported a post-hoc analysis of the SUNLIGHT trial revealed the benefit of TFD/TPI plus bevacizumab independently of the KRASG12 mutational status [39], with similar results replicated in recent real-world study [40]. Notably, a recent meta-analysis comparing TFD/TPI versus placebo and/or best supportive care across 2,903 patients also revealed a benefit with TFD/ FPI regardless of KRAS mutational status [41].

The prognostic and predictive role of the PTL in advanced CRC is well established in the literature [42, 43]. In a retrospective analysis of the TRIBE trial, which evaluated the intensification of first-line therapy with bevacizumab addition to the FOLFOXIRI regimen, right-sided mCRC had inferior OS than left-sided of 23.7 versus 31.0 months (HR: 1.42, 95%Cl 1.09–1.84) [44]. The prognostic role of the PTL has also been evaluated in subsequent lines of mCRC, as reported in a real-world study showing that left-sided tumours had a significant benefit in

PFS for patients treated with regorafenib (2.6 versus 1.9 months, p < 0.05) [45]. However, the prognostic impact of the tumour sidedness in the chemotherapy-refractory setting for mCRC has scarce evidence. A recent real-world study reported that chemotherapy-refractory CRC patients with left-side demonstrated a survival benefit with TFD/TPI followed by regorafenib [46]. Our meta-analysis findings suggest that the addition of bevacizumab to TFD/TPI presents clinically significant benefits irrespective of tumour sidedness.

While the addition of bevacizumab has been reported to improve survival outcomes and is approved by both the U.S. Food and Drug Administration and the European Medicines Agency, considering the incremental costs of such an association can aid in decision-making for regulators [47, 48]. In a study conducted in Japan, TFD/TPI plus bevacizumab had an incremental cost-effectiveness ratio (ICER) of \$21,534 per quality-adjusted life-year compared with TFD/TPI monotherapy, indicating a lower threshold than the WHO's willingness-to-pay recommendations and cost-effectiveness for the Japanese healthcare system [49]. Likewise, Giuliani *et al* [50] evaluated the cost-effectiveness of combining bevacizumab with TFD/TPI, leveraging the ICER and elegantly applying the well-validated European Society for Medical Oncology Magnitude of Clinical Benefit Scale to the Sunlight trial for a comprehensive balance between clinical benefit and cost. The authors concluded that, from the Italian perspective, the combination is cost-effective for the treatment of mCRC patients in the third-line setting. Further studies evaluating the cost-effectiveness of this combination for mCRC patients should be conducted globally, as the prices and access to drugs, such as bevacizumab biosimilars, can differ within healthcare systems across the globe, potentially impacting the adoption of this treatment regimen [6].

Our meta-analysis reported an increase in hypertension with the addition of bevacizumab compared to TFD/TPI monotherapy, reinforcing the need to consider the safety profile of treatment combinations in the later line settings. Bevacizumab cardiotoxicity has been described in multiple studies and a meta-analysis of over 20,000 patients presented the elevated risk of hypertension caused by this targeted therapy [51], whereas TFD/TPI has not demonstrated significant cardiotoxic effects in clinical trials [52]. Furthermore, as reported in a recent real-world analysis [53], our pooled results demonstrated a significant association between TFD/TPI plus bevacizumab and grade \geq 3 neutropenia. The meta-analysis conducted by Huang *et al* [41] comparing TFD/TPI with placebo demonstrated an increased risk of adverse events, although there was no significant risk of serious adverse events, results similar to the obtained in our pooled results.

Our study should be considered within the context of its limitations. The heterogeneity observed in the clinical study designs requires caution when interpreting our study results. To address this variability, sensitivity analyses were conducted to assess the robustness of the pooled outcomes. Furthermore, the reliance on study-level data and the absence of access to individual patient data limit the generalisability of our findings.

Conclusion

In this meta-analysis, we have demonstrated that the addition of bevacizumab to TFD/TPI improved OS for refractory mCRC patients compared to TFD/TPI monotherapy, regardless of RAS mutational status, PTL and prior exposure to bevacizumab. Our study results provide relevant data that can guide patient selection and treatment decisions.

List of abbreviations

CI, Confidence interval; CPM, Colorectal peritoneal metastasis; CRC, Colorectal cancer; ECOG, Eastern cooperative oncology group; EGF, Epidermal growth factor; HR, Hazard ratio; IQR, Interquartile range; IV, Inverse variance; mCRC, Metastatic colorectal cancer; OR, Odds ratio; OS, Overall survival; PFS, Progression-free survival; RCT, Randomized controlled trial; TFD/TPI, Trifluridine-tipiracil; VEGF, Vascular endothelial growth factor.

Conflicts of interest

All authors report no relationships that could be construed as a conflict of interest.

Funding

The authors declare that there was no external funding received for this research. Additionally, the authors declare no financial conflicts of interest related to this work.

Author contributions

The authors confirm contribution to the paper as follows: study conception and design: LF, ES; data collection: LD, LF; analysis and interpretation of results: LD, EM, RG. Author; draft manuscript preparation: LF, RD, ES, WM. Author. Z. Author. All authors reviewed the results and approved the final version of the manuscript.

References

- 1. Sung H, Ferlay J, and Siegel RL, et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA Cancer J Clin 71(3) 209–249 https://doi.org/10.3322/caac.21660 PMID: 33538338
- Rabeneck L, Chiu HM, and Senore C (2020) International perspective on the burden of colorectal cancer and public health effects Gastroenterology 158(2) 447–452 https://doi.org/10.1053/j.gastro.2019.10.007
- 3. Di Nicolantonio F, Vitiello PP, and Marsoni S, *et al* (2021) **Precision oncology in metastatic colorectal cancer from biology to medicine** *Nat Rev Clin Oncol* **18**(8) 506–525 https://doi.org/10.1038/s41571-021-00495-z PMID: 33864051
- 4. Xie YH, Chen YX, and Fang JY (2020) Comprehensive review of targeted therapy for colorectal cancer Signal Transduct Target Ther 5(1) 1-30
- 5. Zeineddine FA, Zeineddine MA, and Yousef A, *et al* (2023) Survival improvement for patients with metastatic colorectal cancer over twenty years *Npj Precis Oncol* 7(1) 1–9
- 6. Cho SK, Bekaii-Saab T, and Kavati A, et al (2022) Value-based analysis of therapies in refractory metastatic colorectal cancer in US Clin Colorectal Cancer 21(4) 277–284 <u>https://doi.org/10.1016/j.clcc.2022.09.003</u> PMID: <u>36216759</u> <Kindly note that [6] and [51] were duplicates in the original reference list. [51] has been removed and the references have been renumbered accordingly. Please check that the changes are correct.>
- Lam M, Lum C, and Latham S, et al (2020) Refractory metastatic colorectal cancer: current challenges and future prospects
 Cancer Manag Res 12 5819–5830 https://doi.org/10.2147/CMAR.S213236 PMID: <u>32765085</u> PMCID: <u>7369412</u>
- Personeni N, Smiroldo V, and Giunta EF, et al (2021) Tackling refractory metastatic colorectal cancer: future perspectives Cancers 13(18) 4506 <u>https://doi.org/10.3390/cancers13184506</u> PMID: <u>34572729</u> PMCID: <u>8472765</u>
- Mayer RJ, Van Cutsem E, and Falcone A, et al (2015) Randomized trial of TAS-102 for refractory metastatic colorectal cancer N Engl J Med 372(20) 1909–1919 https://doi.org/10.1056/NEJMoa1414325 PMID: 25970050
- Cremolini C, Rossini D, and Dell'Aquila E, *et al* (2019) Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line Cetuximab and Irinotecan: a phase 2 single-arm clinical trial JAMA Oncol 5(3) 343–350 https://doi.org/10.1001/jamaoncol.2018.5080 PMCID: <u>6439839</u>
- 11. Amatu A, Mauri G, and Tosi F, *et al* (2022) Efficacy of retreatment with oxaliplatin-based regimens in metastatic colorectal cancer patients: the RETROX-CRC retrospective study *Cancers* 14(5) 1197 <u>https://doi.org/10.3390/cancers14051197</u> PMID: <u>35267504</u> PMCID: 8909235
- 12. Grothey A, Van Cutsem E, and Sobrero A, *et al* (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial *Lancet Lond Engl* 381(9863) 303–312 https://doi.org/10.1016/S0140-6736(12)61900-X

- 13. Dasari A, Lonardi S, and Garcia-Carbonero R, *et al* (2023) Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): an international, multicentre, randomised, double-blind, phase 3 study *Lancet Lond Engl* 402(10395) 41–53 https://doi.org/10.1016/S0140-6736(23)00772-9
- Kuboki Y, Nishina T, and Shinozaki E, et al (2017) TAS-102 plus bevacizumab for patients with metastatic colorectal cancer refractory to standard therapies (C-TASK FORCE): an investigator-initiated, open-label, single-arm, multicentre, phase 1/2 study Lancet Oncol 18(9) 1172–1181 https://doi.org/10.1016/S1470-2045(17)30425-4 PMID: 28760399
- Tsukihara H, Nakagawa F, and Sakamoto K, et al (2015) Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, together with bevacizumab, cetuximab, or panitumumab on human colorectal cancer xenografts Oncol Rep 33(5) 2135–2142 PMID: 25812794 PMCID: 4391594
- 16. Pfeiffer P, Yilmaz M, and Möller S, et al (2020) TAS-102 with or without bevacizumab in patients with chemorefractory metastatic colorectal cancer: an investigator-initiated, open-label, randomised, phase 2 trial Lancet Oncol 21(3) 412–420 <u>https://doi.org/10.1016/</u>S1470-2045(19)30827-7 PMID: 31999946
- 17. Prager GW, Taieb J, and Fakih M, et al (2023) Trifluridine-tipiracil and bevacizumab in refractory metastatic colorectal cancer N Engl J Med 388(18) 1657–1667 https://doi.org/10.1056/NEJMoa2214963 PMID: 37133585
- 18. National Comprehensive Cancer Network (2024) NCCN Guidelines Version 1.2024 Colon Cancer [www.nccn.org/patients]
- Page MJ, McKenzie JE, and Bossuyt PM, et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews BMJ 372 n71 https://doi.org/10.1136/bmj.n71 PMID: doi.org/10.1136/bmj.n71 PMID: https://doi.org/10.1136/bmj.n71 PMID: doi.011136/bmj.n71 PMID: doi.011136/bmj.n71 PMID: doi.011136/bmj.n7
- 20. Sterne JA, Hernán MA, and Reeves BC, *et al* (2016) **ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interven**tions *BMJ* **355** i4919 https://doi.org/10.1136/bmj.i4919 PMID: 27733354 PMCID: 5062054
- 21. Sterne JAC, Savović J, and Page MJ, et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials BMJ 366 I4898 https://doi.org/10.1136/bmj.I4898 PMID: 31462531
- Higgins JPT, Altman DG, and Gøtzsche PC, et al (2011) The cochrane collaboration's tool for assessing risk of bias in randomised trials BMJ 343 d5928 https://doi.org/10.1136/bmj.d5928
- 23. Egger M, Davey Smith G, and Schneider M, et al (1997) Bias in meta-analysis detected by a simple, graphical test BMJ 315(7109) 629-634 https://doi.org/10.1136/bmj.315.7109.629 PMID: 9310563 PMCID: 2127453
- Robins J, Greenland S, and Breslow NE (1986) A general estimator for the variance of the Mantel-Haenszel odds ratio Am J Epidemiol 124(5) 719–723 https://doi.org/10.1093/oxfordjournals.aje.a114447 PMID: 3766505
- 25. DerSimonian R and Laird N (1986) Meta-analysis in clinical trials Control Clin Trials 7(3) 177–188 https://doi.org/10.1016/0197-2456(86)90046-2 PMID: 3802833
- 26. Review Manager (RevMan) [Computer program] (2020) Version 5.4. The Cochrane Collaboration
- 27. RStudio Team (2020) RStudio: Integrated Development for R (Boston: RStudio, PBC) [http://www.rstudio.com/]
- Higgins JPT and Thompson SG (2002) Quantifying heterogeneity in a meta-analysis Stat Med 21(11) 1539–1558 https://doi.org/10.1002/sim.1186 PMID: 12111919
- Chida K, Kotani D, and Nakamura Y, et al (2021) Efficacy and safety of trifluridine/tipiracil plus bevacizumab and trifluridine/tipiracil or regorafenib monotherapy for chemorefractory metastatic colorectal cancer: a retrospective study Ther Adv Med Oncol 13 175883592110091 https://doi.org/10.1177/17588359211009143
- Fujii H, Matsuhashi N, and Kitahora M, et al (2020) Bevacizumab in combination with TAS-102 improves clinical outcomes in patients with refractory metastatic colorectal cancer: a retrospective study Oncologist 25(3) e469–e476 https://doi.org/10.1634/theoncologist.2019-0541 PMID: 32162797 PMCID: 7066722

- 31. Kagawa Y, Shinozaki E, and Okude R, et al (2023) Real-world evidence of trifluridine/tipiracil plus bevacizumab in metastatic colorectal cancer using an administrative claims database in Japan ESMO Open 8(4) 101614 <u>https://doi.org/10.1016/j.esmoop.2023.101614</u> PMID: <u>37562196</u> PMCID: <u>10515287</u>
- Kotani D, Kuboki Y, and Horasawa S, et al (2019) Retrospective cohort study of trifluridine/tipiracil (TAS-102) plus bevacizumab versus trifluridine/tipiracil monotherapy for metastatic colorectal cancer BMC Cancer 19(1) 1253 https://doi.org/10.1186/s12885-019-6475-6 PMID: 31881856 PMCID: 6935149
- 33. Nose Y, Kagawa Y, and Hata T, et al (2020) Neutropenia is an indicator of outcomes in metastatic colorectal cancer patients treated with FTD/TPI plus bevacizumab: a retrospective study Cancer Chemother Pharmacol 86(3) 427–433 <u>https://doi.org/10.1007/s00280-020-04129-6</u> PMID: 32816155
- 34. Loree JM, Kopetz S, and Raghav KPS (2017) Current companion diagnostics in advanced colorectal cancer; getting a bigger and better piece of the pie J Gastrointest Oncol 8(1) 199–212 https://doi.org/10.21037/jgo.2017.01.01 PMID: 28280626 PMCID: 5334060
- Biller LH and Schrag D (2021) Diagnosis and treatment of metastatic colorectal cancer: a review JAMA 325(7) 669–685 https://doi.org/10.1001/jama.2021.0106 PMID: 33591350
- 36. Prager G, Taieb J, and Fakih M, et al (2023) 613P effect of prior use of anti-VEGF agents on overall survival in patients with refractory metastatic colorectal cancer: a post-hoc analysis of the phase III SUNLIGHT trial Ann Oncol 34 S439–S440 <u>https://doi.org/10.1016/j.</u> annonc.2023.09.1804
- 37. van de Haar J, Ma X, and Ooft SN, *et al* (2023) Codon-specific KRAS mutations predict survival benefit of trifluridine/tipiracil in metastatic colorectal cancer Nat Med 29(3) 605–614 https://doi.org/10.1038/s41591-023-02240-8 PMID: 36864254 PMCID: 10033412
- 38. Zhou M, Yu P, and Qu J, et al (2016) Efficacy of bevacizumab in the first-line treatment of patients with RAS mutations metastatic colorectal cancer: a systematic review and network meta-analysis Cell Physiol Biochem 40(1–2) 361–369 <u>https://doi.org/10.1159/000452551</u> PMID: 27866194
- 39. Tabernero J, Prager G, and Fakih M, *et al* (2023) **614P effect of KRASG12 mutations on overall survival in patients with refractory** metastatic colorectal cancer: a post-hoc analysis of the phase III SUNLIGHT trial Ann Oncol **34** S440–S441 <u>https://doi.org/10.1016/j.</u> annonc.2023.09.1805
- Doleschal B, Taghizadeh H, and Lentner T, et al (2023) Bevacizumab mitigates codon-specific effects of trifluridine/tipiracil on efficacy outcome parameters in metastatic colorectal cancer ESMO Open 8(6) 102064 <u>https://doi.org/10.1016/j.esmoop.2023.102064</u> PMID: 37977001 PMCID: 10774958
- 41. Huang F, Yang H, and Bao W, *et al* (2024) Efficacy and safety of trifluridine/tipiracil (TAS-102) in patients with metastatic colorectal cancer: a systematic review and meta-analysis Clin Transl Oncol 26(2) 468–476 https://doi.org/10.1007/s12094-023-03268-5
- 42. Bahl A, Talwar V, and Sirohi B, *et al* (2020) Primary tumor location as a prognostic and predictive marker in metastatic colorectal cancer (mCRC) *Front Oncol* **10** 964 <u>https://doi.org/10.3389/fonc.2020.00964</u> PMID: <u>32612957</u> PMCID: <u>7309590</u>
- Jensen CE, Villanueva JY, and Loaiza-Bonilla A (2018) Differences in overall survival and mutation prevalence between right- and left-sided colorectal adenocarcinoma J Gastrointest Oncol 9(5) 778–784 <u>https://doi.org/10.21037/jgo.2018.06.10</u> PMID: <u>30505575</u> PMCID: <u>6219968</u>
- 44. Cremolini C, Antoniotti C, and Lonardi S, et al (2018) Primary tumor sidedness and benefit from FOLFOXIRI plus bevacizumab as initial therapy for metastatic colorectal cancer. Retrospective analysis of the TRIBE trial by GONO Ann Oncol 29(7) 1528–1534 <u>https://doi.org/10.1093/annonc/mdy140 PMID: 29873679</u>
- 45. Yoon SE, Lee SJ, and Lee J, *et al* (2019) The impact of primary tumor sidedness on the effect of regorafenib in refractory metastatic colorectal cancer J Cancer 10(7) 1611–1615 https://doi.org/10.7150/jca.29106 PMID: 31205516 PMCID: 6548008

- 46. Signorelli C, Calegari MA, and Basso M, *et al* (2023) **617P predictive and prognostic impact of primary tumor location on sequential** treatment with regorafenib and trifluridine/tipiracil at third line and beyond in metastatic colorectal cancer: a real-world multicenter retrospective analysis Ann Oncol **34** 5442–5443 https://doi.org/10.1016/j.annonc.2023.09.1808
- 47. Cho SK, Hay JW, and Barzi A (2018) Cost-effectiveness analysis of Regorafenib and TAS-102 in refractory metastatic colorectal cancer in the United States *Clin Colorectal Cancer* 17(4) e751–e761 https://doi.org/10.1016/j.clcc.2018.08.003 PMID: 30228027
- 48. Bullement A, Underhill S, and Fougeray R, *et al* (2018) **Cost-effectiveness of trifluridine/tipiracil for previously treated metastatic** colorectal cancer in England and Wales *Clin Colorectal Cancer* **17**(1) e143–e151 https://doi.org/10.1016/j.clcc.2017.09.001
- 49. Sugiura K, Seo Y, and Takahashi T, *et al* (2021) Cost-effectiveness of TAS-102 plus bevacizumab versus TAS-102 monotherapy in patients with metastatic colorectal cancer *BMC Gastroenterol* 21(1) 184 <u>https://doi.org/10.1186/s12876-021-01771-z</u> PMID: 33879100 PMCID: 8058969
- 50. Giuliani J, Mantoan B, and Mangiola D, et al (2024) Cost-effectiveness of the new combination trifluridine/tipiracil plus bevacizumab for the third-line treatment for metastatic colorectal cancer in Italy Clin Colorectal Cancer 23(1) 1–3 <u>https://doi.org/10.1016/j.</u> clcc.2023.10.005
- 51. Petrelli F, Barni S, and Bertocchi P, et al (2016) TAS-102, the first "cardio-gentle" fluoropyrimidine in the colorectal cancer landscape? BMC Cancer 16(1) 386 https://doi.org/10.1186/s12885-016-2409-8
- 52. Lyon AR, López-Fernández T, and Couch LS, et al (2022) 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): developed by the task force on cardio-oncology of the European Society of Cardiology (ESC) Eur Heart J 43(41) 4229–4361 https://doi.org/10.1093/eurheartj/ehac244 PMID: 36017568
- 53. Lago NM, Rendo CR, and Chucla TC, et al (2023) P-240 frequency and management of trifluridine/tipiracil (FTD/TPI) + bevacizumab (BEV)-associated neutropenia in patients with refractory mCRC in real-world practice Ann Oncol 34 S100–S101 <u>https://doi.org/10.1016/j.annonc.2023.04.296</u>

Supplementary material

Table S1. Sensitivity and heterogeneity analyses were conducted for overall survival and progression-free survival. Upon excluding observational studies and Nose, Y 2020, the pooled results indicated low heterogeneity. Furthermore, the combined therapy demonstrated robust results, highlighting its beneficial effects.

		Overall Survival		Prog	gression-free survival	
	n studies	HR (95% CI)	1 ²	n studies	HR (95% CI)	 ²
Random effects	7	0.65 (0.59; 0.72)	56%	5	0.48 (0.40; 0.59)	45%
Fixed effects	7	0.66 (0.61; 0.72)	56%	5	0.49 (0.42; 0.56)	45%
Only RCTs	2	0.60 (0.49; 0.74)	0%	2	0.44 (0.37; 0.53)	0%
Only observational	5	0.57 (0.43; 0.76)	68%	3	0.51 (0.35; 0.73)	45%
Omitting Pfeiffer, P 2020	6	0.67 (0.61; 0.73)	62%	4	0.49 (0.41; 0.59)	58%
Omitting Prager, G 2023	6	0.67 (0.61; 0.74)	62%	4	0.53 (0.44; 0.63)	46%
Omitting Kotani, D 2019	6	0.61 (0.52; 0.71)	63%	4	0.47 (0.40; 0.55)	46%
Omitting Fuji, H 2019	6	0.67 (0.61; 0.73)	53%	-	-	-
Omitting Nose, Y 2020	6	0.67 (0.62; 0.73)	1%	4	0.50 (0.43; 0.59)	27%
Omitting Chida, K 2021	6	0.59 (0.49; 0.72)	64%	4	0.45 (0.39; 0.53)	38%
Omitting Kagawa, Y 2023	6	0.59 (0.51; 0.69)	52%	-	-	-

Table S2. The risk of bias summary displays authors' judgments regarding each domain of bias for studies utilizing the ROB-2 tool (RCTs). All RCTs demonstrated a low risk of bias.

		D1	D2	D3	D4	D5	Overall
Study	Pfeiffer, P. 2020	+	+	+	+	+	+
Stl	Prager, G 2023	+	+	+	+	+	+
		D2: Bias due D3: Bias due D4: Bias in m	to deviations to to missing out leasurement o	Indomization p from intended i tcome data. If the outcome. reported result	intervention.		Judgement

Table S3. The risk of bias summary presents authors' assessments of each domain of bias for studies employing ROBINS-I (observational studies). Among the three observational studies (Fuji, 2019; Chida, 2021; Kagawa, 2023), a moderate risk of bias was observed. Conversely, one article (Nose, 2020) exhibited a serious risk of bias.

					Risk of bia	as domains			
		D1	D2	D3	D4	D5	D6	D7	Overall
	Nose, 2020	8	+	+	+	+	+	+	8
	Fuji, 2019	•	•	+	+	+	+	+	•
Study	Kotani, 2019	+	•	+	+	+	+	+	•
	Chida, 2021	•	+	•	+	•	+	+	•
	Kagawa, 2023	+	÷	•	+	•	+	+	•
		Domains: D1: Bias due to confounding D2: Bias due to selection of 1 D3: Bias in classification of in D4: Bias due to deviations frr D5: Bias due to missing data D6: Bias in measurement of 4 D7: Bias in selection of the rr	om intended interventions. outcomes.			*			Judgement Serious Moderate Łow

esearch

a) Anemia

	2 + Bevaci		T/	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Kotani, D 2019	52	60	60	66	7.4%	0.65	[0.21: 2.00]	
Nose, Y 2020	0	32	1	24	0.9%	0.24	[0.01; 6.18]	
Pfeiffer, P 2020	31	46	34	47	11.9%	0.79	[0.33; 1.92]	
Prager, G 2023	86	246	105	246	70.6%	0.72	[0.50, 1.04]	
Shibutani, M 2020	18	36	14	26	9.2%	0.86	[0.31, 2.35]	
Total (95% CI)	187	420	214	409	100.0%	0.73	[0.54; 0.99]	•
Heterogeneity: Tau2 :				$l^2 = 0\%$				
Test for overall effect	Z = -2.03 (P = 0.042	2227)				(0.01 0.1 1 10 100
								TAS-102 TAS-102 + Bevacizuma

Weight OR

1.72

66 24 47 246 26 25.3% 1.6% 14.5% 49.2% 9.4% 1.34 9.80 3.13 1.73 0.95

409 100.0% = 0.37); I² = 6%

24

31 6

TAS-102 s Total

Events

168

168 6909 0.80), I² = 0%

69 df = 4 (P =

95% CI

[0.65, 2.74] [0.52, 186.46] [1.20, 8.22] [1.06, 2.81] [0.29, 3.17]

[1.18; 2.50]

b) Neutropenia

TAS-102 + Bevacizumab			TA	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Kotani, D 2019	41	60	47	66	20.8%	0.87	[0.41; 1.87]	
Nose, Y 2020	20	32	8	24	12.4%	3.33	[1.10; 10.12]	
Pfeiffer, P 2020	39	46	31	47	14.4%	2.88	[1.05; 7.86]	
Prager, G 2023	143	246	126	246	39.5%	1.32	[0.93, 1.89]	+
Shibutani, M 2020	24	36	18	26	12.9%	0.89	[0.30, 2.63]	
Total (95% CI)	267	420	230	409	100.0%	1.44	[0.92; 2.26]	-
Heterogeneity Tau2 :				0.16); 12:	= 39%			
Test for overall effect	Z = 1.61 (F	e = 0.106	609)				(0.1 0.5 1 2 10
								TAS-102 TAS-102 + Bevacizumab

d) Nausea

dds Ratio

0.1 1 10 10 TAS-102 TAS-102 + Be

100

MH S

0.01

Odds Ra MH, Random

0.5 TAS-102

m. 95% CI

TAS-102 + Be

95% CI

[0.40, 1.55] [0.81, 3.33] [0.23, 3.30] [0.31, 3.04] [0.77, 1.83] [0.39, 3.02] 0.79 1.64 0.88 0.97 1.18 1.09 18.6% 16.8% 4.8% 6.5% 45.2% 8.1%

1.12 [0.84; 1.50]

TAS-10	TAS-102 + Bevacizumab		T	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Kagawa, Y 2023	371	2369	556	6500	29.3%	1.99	[1.72; 2.29]	-
Kotani, D 2019	10	60	15	66	14.7%	0.68	[0.28; 1.66]	
Nose, Y 2020	1	32	2	24	3.3%	0.35	[0.03; 4.16]	•
Pfeiffer, P 2020	28	46	33	47	15.2%	0.66	[0.28; 1.56]	
Prager, G 2023	95	246	71	246	25.4%	1.55	[1.06: 2.26]	
Shibutani, M 2020	10	36	11	26	12.0%	0.52	[0.18, 1.52]	
Total (95% CI)	515	2789	688	6909	100.0%	1.08	[0.67; 1.75]	+
Heterogeneity: Tau				< 0.01); ["	= 74%			
Test for overall effect	CZ = 0.33 (F	= 0.741	/66)					0.1 0.5 1 2 10
								TAS-102 TAS-102 + Bevac

e) Vomiting

g) Fatigue

Total (95% CI)

TAS-102 + Bevac Events

Total

Test for overall effect 7 = 2.81

Study

Kotani, D 2019

Total (95% CI)

P 2020 Prager, C

c) Thrombocytopenia

106 420 24; Chi² = 4.24, 2 91 /P = 0.0049

	2 + Bevaci		T	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% Cl
Fuji, H 2019	6	21	3	36	6.0%	4.40	[0.97; 20.00]	
Kotani, D 2019	2 16	60	4	66	4.5%	0.53	[0.09; 3.03]	
Pfeiffer, P 2020	16	46	13	47	17.6%	1.39	[0.58; 3.37]	
Prager, G 2023	48	246	40	246	63.9%	1.25	[0.79, 1.98]	
Shibutani, M 2020	6	36	5	26	8.0%	0.84	[0.23; 3.12]	
Total (95% CI)	78	409	65	421	100.0%	1.28	[0.88; 1.85]	+
Heterogeneity: Tau ² :				$ 1^2 = 0.96$				1 1 1 1 1
Test for overall effect	Z = 1.31 (F	P = 0.191	502)					0.1 0.5 1 2 10
								TAS-102 TAS-102 + Bevacizum

Weight OR

100.0%

f) Diarrhea TAS-102 TAS-102 Total + Bevacia Total 95% CI OR Weight [1.20, 1.67] [0.20, 2.14] [0.10, 5.62] [0.53, 2.95] [0.67, 1.58] [0.04, 1.07] 44.3% 7.7% 2.9% 12.7% 28.4% 4.0% 2369 60 32 46 246 36 475 1.42 0.66 0.73 1.25 1.02 0.20 Kagawa, Y 2023 Kotani, D 2019 Nose, Y 2020 238 6500 66 24 47 246 26 8 2 15 52 6 5 2 17 53 2 202

iger, G 202 butani, M 2 **317 2789** 0671; Chi² = 8.60, df = 0.46 (P = 0.646573 558 5 (P = 6909 = 0.13); I² = 100.0% Total (95% CI) 1.09 Heterogeneity: Ta Test for overall eff

0.1 0.5 1 2 TAS-102 TAS-102 10

Odds Ratio Random, 95% CI

h) Hypertension

	2 + Bevaci	zumab	T	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Kagawa, Y 2023	331	2369	487	6500	53.1%	2.01	[1.73; 2.33]	
Kotani, D 2019	23	60	11	66	25.7%	3.11	[1.35; 7.13]	
Prager, G 2023	25	246	5	246	21.3%	5.45	[2.05; 14.49]	
Total (95% CI)	379	2675	503	6812	100.0%	2.78	[1.56: 4.94]	-
Heterogeneity: Tau	2 = 0.1569	$Chi^{2} = 4.8$	9. df = 2 (P	= 0.09); 1	2 = 59%			Atival o Wir
Test for overall effe	ct Z = 3.48	(P = 0.00)	0510)					0.1 0.5 1 2 10- TAS-102 TAS-102 + Bevacizuma
								TAS-102 TAS-102 + Bevacizuma

[0.76; 1.55]

Figure S1. Forest plots depicting adverse events across all grades, including anemia, neutropenia, thrombocytopenia, nausea, vomiting, diarrhea, fatigue, and hypertension, were generated. Notably, anemia, thrombocytopenia, and hypertension exhibited statistical significance with p-values less than 0.05

15

a) Anemia

TAS-10	2 + Bevaci	zumab	T	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Chida, K 2021	21	47	34	47	23.1%	0.31	[0.13; 0.73]	
Kotani, D 2019	9	60	14	66	20.0%	0.66	[0.26; 1.65]	
Nose, Y 2020	0	32	1	24	1.6%	0.24	[0.01; 6.18]	
Pfeiffer, P 2020	2	46	8	47	6.6%	0.22	[0.04, 1.11]	
Prager, G 2023	15	246	27	246	39.4%	0.53	[0.27; 1.02]	
Shibutani, M 2020	4	36	7	26	9.3%	0.34	[0.09; 1.31]	
Total (95% CI)	51	467	91	456	100.0%	0.44	[0.29; 0.66]	•
Heterogeneity: Tau ²	= 0; Chi ² = 2	.63. df =	5 (P = 0.76)	$l^2 = 0.96$				
Test for overall effect	t Z = -3.95 (P = 0.000	(080)					0.01 0.1 1 10 100
								TAS-102 TAS-102 + Bevaciza

c) Thrombocytopenia

Chda, K 2021 6 47 7 47 357% 0.84 10.26; 2.711 Fu, H 2019 4 21 2 36 15.3% 400 10.66; 24.06] Kotan, D 2019 2 60 2 66 12.4% 10 10.15; 8.09] Mose, Y 2020 1 32 0 24 4.7% 2.33 [0.09; 59.81] Prager, G 2023 7 246 32.4% 2.37 [0.19; 9.27]		2 + Bevaci	zumab	T/	AS-102				Odds Ratio
Fig. H 2019 4 21 2 36 15.3% 4.00 [0.66, 24.06] Kotan, D 2019 2 60 2 66 12.4% 1.10 [0.15, 8.09] Mose, Y 2020 1 32 0 24 4.7% 2.33 [0.09, 59.81] Proger, G 2023 7 2.46 32.4% 2.37 [0.61, 9.27]	Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Kolan, D 2019 2 60 2 66 12.4% 1.10 [0 15, 8.09] Nose, Y 2020 1 32 0 24 4.7% 2.33 [0.09, 59.81] Prager, G 2023 7 246 3 246 26.5% 2.37 [0 61, 9.26] Shbudan, M 2020 3 36 0 26 5.4% 5.54 [0 27, 111.97]	Chida, K 2021			7	47	35.7%	0.84	[0.26; 2.71]	
Kotani, D 2019 2 60 2 66 12.4% 1.10 [0.15, 8.09] Nose, Y 2020 1 32 0 24 4.7% 233 [0.09, 50.81] Prager, G 2023 7 246 3 246 26.5% 2.37 [0.61, 9.26] Shubuan, M 2020 3 36 0 26 5.4% 5.54 [0.27, 111.97]	Fuji, H 2019	4	21	2	36	15.3%	4.00	[0.66, 24.06]	
Prager, G 2023 7 246 3 246 26.5% 2.37 [0.61; 9.28]	Kotani, D 2019	2	60	2	66	12.4%	1.10	[0.15; 8.09]	
Shibutani, M 2020 3 36 0 28 5.4% 5.54 [0.27; 111.97]	Nose, Y 2020	1	32	0	24	4.7%	2.33	[0.09; 59.81]	
	Prager, G 2023	7	246	3	246	26.5%	2.37	10.61: 9.281	
Total (95% CI) 23 442 14 445 100.0% 1.69 [0.84; 3.40]	Shibutani, M 2020	3	36	0	26	5.4%	5.54	[0.27; 111.97]	
	Total (95% CI)	23	442	14	445	100.0%	1.69	[0.84; 3.40]	+
	Test for overall effect	t: Z = 1.46 (F	= 0.145	017)					0.01 0.1 1 10 100
Test for overall effect: Z = 1.46 (P = 0.145017) 0.01 0.1 1 10 100									TAS-102 TAS-102 + Bevar

e) Vomiting

Odds Ratio MH, Random TAS-102 + Bevacia Events TAS-102 Events Total Total Study Weight OR 95% CI n. 95% CI [1.34; 7.25] [1.05; 10.33] [0.71; 2.92] [1.29; 14.37] [1.42; 7.81] [1.33; 2.83] [0.07; 0.64] Chida, K 2021 Fuji, H 2019 Kotani, D 2019 Nose, Y 2020 14.8% 11.7% 16.3% 11.1% 14.6% 19.8% 11.8% 3.12 3.30 1.44 4.31 3.33 1.94 0.21 47 21 60 32 46 246 36 47 36 66 24 47 246 26 18 9 27 5 18 69 14 31 11 30 17 31 106 7 Prager, G 2023 Shibutani, M 2020 1.92 [1.08; 3.40]

d) Nausea

b) Neutropenia

	2 + Bevaci	zumab	T	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Chida, K 2021	1	47	0	47	10.8%	3.06	[0.12; 77.16]	
Pfeiffer, P 2020	3	46	1	47	21.2%	3.21	[0.32; 32.04]	
Prager, G 2023	4	246	4	246	56.1%	1.00	[0.25; 4.04]	
Shibutani, M 2020	0	36	2	26	11.9%	0.13	[0.01, 2.92]	
Total (95% CI)	8	375	7	366	100.0%	1.14	[0.39; 3.30]	+
Heterogeneity: Tau ²				0.39); 17 :	= 1%			
Test for overall effect	t: Z = 0.24 (F	P = 0.811	840)					0.01 0.1 1 10 100
								TAS-102 TAS-102 + Bevaci:

0.1

0.5 1 2 10 TAS-102 TAS-102 + Bevacizumat

f) Diarrhea

h) Hypertension

TAS-10	2 + Bevaci	zumab	T	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Chida, K 2021	0	47 32	1	47	17.9%	0.33	[0.01; 8.22]	
Nose, Y 2020 Pfeiffer, P 2020	3	46	0	24 47	19.2% 20.1%	0.14 7.64	[0.01; 3.02] [0.38; 152.24]	
Prager, G 2023	2	246	6	246	42.9%	0.33	[0.07; 1.64]	
Total (95% CI)	5	371	9	364	100.0%	0.52	[0.11; 2.45]	
Heterogeneity: Tai Test for overall effe				9 = 0.23);	$l^2 = 30\%$			0.01 0.1 1 10 100
								TAS-102 TAS-102 + Bevacizu

g) Fatigue

Study Events Total Events Total Weight OR 95% CI MH, Random, 95% CI Nose; Y2020 0 32 2 24 8.0% 0.14 10.01;3.02] 976 10.13;0.21 976 976 976 10.13;0.21 976 976 10.13;0.21 976 976 10.13;0.21 976 976 10.13;0.21 976 10.13;0.21 976 10.13;0.21 976 10.13;0.21 976 10.13;0.21	TAS-10	2 + Bevaci	zumab	T	AS-102				Odds Ratio
Pfeiffer, P 2020 3 46 5 47 34.1% 0.59 [0.13, 2.61]	Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Prager, G 2023 3 246 9 246 43.8% 0.33 [0.09; 1.22]	Nose, Y 2020	0	32	2	24	8.0%	0.14	[0.01; 3.02]	
	Pfeiffer, P 2020	3	46	5	47	34.1%	0.59	0.13; 2.61]	
Shibutani, M 2020 1 36 3 26 14 1% 0.22 [0.02; 2.24]	Prager, G 2023	3	246	9	246	43.8%	0.33	[0.09; 1.22]	
	Shibutani, M 2020	1	36	3	26	14.1%	0.22	[0.02; 2.24]	
Total (95% Cl) 7 360 19 343 100.0% 0.35 [0.15: 0.84]	Total (95% CI)	7	360	19	343	100.0%	0.35	[0.15; 0.84]	-
Heterogeneity: Tau ² = 0; Chi ² = 0.98, df = 3 (P = 0.81); f ² = 0%									0.01 0.1 1 10 100
Test for overall effect: Z = -2.35 (P = 0.018727) 0.01 0.1 1 10 10									TAS-102 TAS-102 + Bevaciz

TAS-10	2 + Bevaci	zumab	Т	AS-102				Odds Ratio
Study	Events	Total	Events	Total	Weight	OR	95% CI	MH, Random, 95% CI
Chida, K. 2021	4	139	0	153	13.5%	10.20	[0.54; 191.10]	
Kotani, D 2019	4	60	0	66	13.4%	10.59	[0.56; 201.01]	
Prager, G 2023	14	246	3	246	73.1%	4.89	[1.39, 17.23]	
Total (95% CI)	22	445	3	465	100.0%	5.99	[2.04; 17.58]	- wivar o Win
Heterogeneity: Ta	$u^2 = 0; Chi^2$	= 0.38, dt	f = 2 (P = 0.1	$(13); 1^2 = 0$	96			
Test for overall eff								0.01 0.1 1 Atoesstoo.onfigur
								TAS-102 TAS-102 + Bevacizumab

Figure S2. Forest plots for grade \geq 3 adverse events of anemia, neutropenia, thrombocytopenia, nausea, vomiting, diarrhea, fatigue, and hypertension were generated. Anemia, neutropenia, fatigue, and hypertension did not fall within the null value and showed statistical significance with a p-value less than <0.05.

A				
Study	Odds Ratio	OR	95%-CI	12
Omitting Pfeiffer, P 2020 Omitting Prager, G 2023 Omitting Kotani, D 2019 Omitting Fuji, H 2019 Omitting Nose, Y 2020 Omitting Shibutani, M 2020 Omitting Chida, K 2021	1000	1.90 2.02 1.78 1.73 2.22	[0.91; 3.34] [0.86; 4.21] [1.01; 4.04] [0.94; 3.36] [0.93; 3.21] [1.69; 2.93] [0.91; 3.40]	76% 75% 75% 74% 1%
Random effects model		- 1.92	[1.08; 3.40]	72%
B 0.1 TAS-102	0.5 1 2 + Bevacizumab	5 TAS-102		
Study	Odds Ratio	OR	95%-CI	12
Omitting Pfeiffer, P 2020 Omitting Prager, G 2023 Omitting Kotani, D 2019 Omitting Nose, Y 2020 Omitting Shibutani, M 2020 Omitting Kagawa, Y 2023		0.84 1.21 1.13 1.24 0.84	[0.76; 1.97] [0.38; 1.84] [0.74; 1.96] [0.70; 1.83] [0.78; 1.96] [0.48; 1.49]	78% 72% 77% 71% 52%
Random effects model		1.08	[0.67; 1.75]	74%
0.1 TAS-102	0.5 1 2 + Bevacizumab 1	5 TAS-102		
Study	Odds Ratio	OR	95%-CI	12
Omitting Prager, G 2023 Omitting Kotani, D 2019 Omitting Kagawa, Y 2023		→ 2.93	[1.71; 2.46] [1.13; 7.61] [2.09; 7.41]	4% 75% 0%
Random effects model		2.78	[1.56; 4.94]	59%
0.1 TAS-102	0.5 1 2 + Bevacizumab T	5 AS-102		

Figure S3. A sensitivity test was conducted for neutropenia - grades 3-4 (Figure A), nausea - all grades (Figure B), and hypertension - all grades (Figure C). In Figure A, upon excluding the study "Shibutani, M 2020," the I² value reduced to 1%. In Figure C, the omission of "Prager, G 2023" and "Kagawa, Y 2023" resulted in I² values of 4% and 0%, respectively.

.

Figure S4. Funnel plot for the outcomes of overall survival (A) and progression-free survival (B). The studies exhibit symmetry around the funnel plot A and B but one study falls outside of the funnel plot A. There might be some concerns of publication bias.