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Abstract

Cancer remains a primary cause of morbidity and mortality worldwide, and its incidence 
continues to increase. The most common cause of death in cancer patients is tumour 
recurrence. Surgery is the gold standard in the treatment of most tumours. However, 
cancer surgery can lead to the release of tumour cells into the systemic circulation. Surgi-
cal stress and several perioperative factors have been suggested to boost tumour growth, 
thereby increasing the risk of metastatic recurrence.

Preclinical and clinical studies suggest that anaesthetics and adjuvants administered dur-
ing the perioperative period may impact cancer recurrence and survival. This document 
summarises the current evidence regarding the effects of anaesthetic drugs and analgesic 
techniques on the immune system, systemic inflammatory response and tumour cells, as 
well as their impact on cancer recurrence.
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Introduction

Cancer is the second cause of mortality in developed countries, with most deaths caused 
by metastasis [1]. Surgery is one of the factors involved in metastatic spread since it may 
facilitate the release of cancer cells into the bloodstream during tumour manipulation. 
Another factor related to cancer spread is the systemic inflammatory response associated 
with perioperative surgical stress. Consequently, surgery implies two factors related to 
metastatic progression, i.e., the presence of cancer cells with metastatic potential and an 
appropriate microenvironment for their growth. Among that can affect metastatic pro-
gression of tumour cells is the anaesthetic technique [2].
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The anaesthetic technique can influence patients’ neuroendocrine and immune responses during surgery. Surgical stress can suppress the 
antitumour immune response and stimulate the hypothalamic-pituitary-adrenal (HPA) axis, which, along with the activation of the sympa-
thetic nervous system (SNS), also regulates the immune response. The activation of the HPA and the SNS leads to the suppression of cell 
immunity (CI) as well as the release of catecholamines and prostaglandin E2 [3]. In turn, these molecules increase immunosuppressant cyto-
kines such as interleukin (IL): IL-4 and IL-10, TGF-β (transforming growth factor-beta) and vascular endothelial growth factor (VEGF); as well 
as pro-inflammatory cytokines, such as IL-6 and IL-10, which promote tumour angiogenesis and facilitate the development of metastases [4].

Anaesthetic agents vary in their ability to induce immunomodulation and boosting of tumour growth factors. Pre- and postoperative opioids 
are able to inhibit the humoral immune response and can have pro-angiogenic effects, which promote tumour cell growth [5, 6]. On the other 
hand, regional anaesthesia preserves CI and reduces the surgery-induced neuroendocrine response by debilitating afferent activations medi-
ated by the HPA axis and SNS neural responses. Regional anaesthetic techniques have been associated with lower rates of cancer recurrence 
[7, 8].

Despite the fact that some studies have shown significant benefit in terms of cancer recurrence a recent metaanalysis shows that RA has no 
overall survival, recurrence- free survival or biochemical recurrence-free survival benefit [9].

In this review, we aim to provide more information regarding the role of surgery and anaesthesia in different aspects of tumour recurrence.

Surgical stress

Surgery remains the primary treatment for most cancer patients. However, the surgical stress leads to immune suppression, allows tumour 
cell adhesion and increases the release of metalloproteases (MMP) and VEGF. These factors increase the mobility and invasiveness of cancer 
cells and neovascularisation, and promote cancer progression and metastasis formation.

The first line of defence against the development of primary tumours and metastases are natural killer (NK) cells [10]. The changes in the 
activity of NK cells depend on both the intensity of the surgery and the magnitude of the stress response, which increases the release of cat-
echolamines and prostaglandins by activating the HPA axis and SNS [11]. From a clinical perspective, surgery leads to decreased circulation 
of NK and T cells via the induction of apoptosis. Surgical stress increases the amount of Th2 lymphocytes and decreases the amount of Th1 
lymphocytes, thereby reducing the Th1/Th2 ratio, which eventually leads to CI suppression [12]. Moreover, the levels of immunomodulatory 
cytokines such as IL-2, IL-12 and interferon-γ (IFN-γ) decrease, whereas anti-inflammatory cytokines such as IL-10 increase [13].

Oxidative stress, inflammation and molecular regulators

Oxidative stress and inflammatory response are among the most important factors that influence the development, growth and metastatic 
spread of malignant tumours. Oxidative stress can be induced in tumour cells by overproduction of reactive oxygen species (ROS) due to 
downregulation of NADPH oxidase [14]. It can also be induced by overexpression of thymidine phosphorylase, as observed in most carci-
nomas [15].

In general, tumours quickly outgrow their blood supply, leading to glucose deprivation and hypoxia. The lack of glucose induces oxidative 
stress and depletes intracellular pyruvate in cancer cells, thus preventing the breakdown of endogenous oxygen radicals [16]. Oxygen radicals 
damage DNA, causing filament tears, guanine and thymine alterations and exchanges of sister chromatids. The genetic instability second-
ary to oxidative stress increases the malignant potential of tumours. Furthermore, oxidative stress can activate several transcription factors, 
including NF-κB, AP-1, p53 and hypoxia-inducible factor-1 α (HIF-1) [17].

In tumour cells, the expression of HIF promotes cell proliferation and induces the secretion of angiogenic factors, including VEGF and angio-
poietin-2. Therefore, hypoxia is strongly associated with tumour progression and metastatic spread [18]. A comprehensive review by Tavare 
et al [19] described the direct effects of anaesthetics on HIF-1, which is upregulated by inhalational anaesthetics, and inhibited by propofol. 
Oxidative stress and inflammation are interrelated. Oxidative stress activates inflammatory pathways that transform normal cells into tumour 
cells, increasing their chances of survival, proliferation, chemo- and radio-resistance, invasiveness and angiogenesis, as compared to stem 
cells [20].
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Effects of anaesthetic agents on immune function and tumour development

Halogenated anaesthetics

Several studies showed that halogenated anaesthetics inhibit the activity of the immune system. Their impact on the activity of NK and T 
cells is time- and dose-dependent [21]. Volatile anaesthetics also inhibit various lymphocyte functions, including proliferation and cytokine 
production [22].

Sevoflurane has been demonstrated to increase the levels of pro-tumourigenic cytokines and MMP [23]. Isoflurane reduces the activity of 
NK cells, induces T cell and B cell apoptosis and reduces the Th1 /Th2 ratio [24].

Unlike total intravenous anaesthesia (TIVA), exposure to sevoflurane increases the levels of proteins such as cytoplasmic HIF-2α and nuclear 
p38, which are both associated with a worse prognosis in cancer patients [25]. Halothane reduces the activity of NK cells and increases 
HIF-1α expression [26]. Conversely, propofol prevents the activation of HIF-1α induced by isoflurane, which is related to a partial reduction 
of the malignant behaviour of cancer cells [27]. Isoflurane is associated with higher levels of HIF-1α and increased proliferation and migration 
of cancer cells. Sevoflurane induces T cell apoptosis and increases the rate of expression of HIF-1α [28].

Isoflurane increases the malignant potential of cancer cells through the upregulation of insulin-like growth factor (IGF)-1 and its receptor 
(IGF-1R), as well as VEGF, angiopoietin-1, MMP-2 and MMP-9. Moreover, isoflurane exposure leads to resistance to apoptosis through a 
caveoline-1-dependent process [23, 29].

Nitrous oxide (N2O) disrupts the synthesis of DNA, purines and thymidylate, which can induce oncogenesis [30]. As demonstrated in an in 
vivo model, N2O suppresses chemotaxis, which is potentially the strongest stimulator for the development of liver and lung metastases after 
surgery [31].

Intravenous anaesthetics: propofol, ketamine and thiopental

Intravenous hypnotics have multiple effects on the immune system. Unlike propofol, ketamine and thiopental suppress the activity of NK 
cells [32]. Ketamine induces apoptosis in lymphocytes via a mitochondrial pathway and inhibits the functional maturation of dendritic cells, 
while thiopental protects T cells from apoptosis via the induction of thermic shock proteins [33].

On the one hand, ketamine reduces the synthesis of pro-inflammatory cytokines, such as IL-6, and tumour necrosis factor α (TNF-α). On 
the other hand, thiopental inhibits the function of neutrophils and suppresses the activation of nuclear factor kappa B (NF-κB). This factor 
is associated with inhibition of the activity of the NF-κB reporter gene, which leads to activation of T cells, secretion of IL-2, IL-6 and IL-8, as 
well as overexpression of IFN-γ [34].

Apparently, propofol displays a different profile since its protective effects are exerted by other mechanisms, including anti-inflammatory 
effects, COX-2 inhibition and PGE-2 reduction, increased cytotoxic T lymphocyte activity, and decreased pro-inflammatory cytokines [35]. 
Propofol does not affect the Th1/Th2 ratio [36], and is weakly bound to β-adrenoreceptor, producing a β-blocking effect that improves 
anti-tumour immunity and preserves the function of NK cells [37]. Patients receiving perioperative β-blockers have a lower recurrence of 
metastases after surgery [38].

Propofol conjugates (propofol-docosahexanoate and propofol-eicosapentanoate) have been shown to inhibit cell adhesion and migration, 
and to induce apoptosis in cancer cells [39]. Propofol reduces cytokine concentrations (IL-1, TNF-α and IL-6), and stimulates the secretion of 
nitrous oxide in neutrophils [40]. Propofol concentrations of 1–5 mg/mL were found to decrease the invasiveness of cancer cells. Moreover, 
continuous infusion of propofol can inhibit the development of lung metastases. Wigmore et al [41] retrospectively compared the long-term 
survival of patients under general anaesthesia using halogenates versus TIVA in cancer surgery. They concluded that the modality of anaes-
thesia was significantly associated with patient survival, which was higher in the TIVA group. Working under this assumption, Enlund et al [42] 
observed that 1-year survival was almost 10% higher in cancer surgeries where propofol was used as an anaesthetic.
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In contrast with these findings, a recent retrospective study in lung cancer patients found no outcome improvements when comparing TIVA 
versus inhalation anaesthesia [43].

Opioids

Opioid analgesics can affect tumour development via the modulation of cell proliferation and apoptosis. Morphine suppresses the activ-
ity of NK cells and the differentiation of T cells, promotes lymphocyte apoptosis and decreases toll-like receptor 4 (TLR4), expressed in 
macrophage membranes [44]. Likewise, fentanyl and sufentanil decrease the activity of NK cells but increase the number of regulatory T 
cells. Morphine stimulates the proliferation and angiogenesis of endothelial cells by activating mitogen-activated protein kinase/extracellular 
signal-regulated kinase phosphorylation via Gi/Go-coupled G protein receptors and nitric oxide in these microvascular endothelial cells [45, 
46]. The promotion of tumour growth is mediated by AKT; extracellular signalling is mediated by ERK (extracellular signal-regulated kinase); 
the promoting effects of cell apoptosis are mediated by the inhibition of NF-κB, increase in Fas expression, p53 stabilisation, p38 activation 
and c-jun-N kinase (JNK) [47]. These effects include apoptosis inhibition via AKT activation, and promotion of cell cycle progression via the 
increase of cyclin D1 [48].

Studies suggest that sufentanil also inhibits leukocyte migration [49], alfentanil decreases the activity of NK cells and remifentanil was 
reported to suppress the activity of NK cells and lymphocytic proliferation in an in vitro model [50]. In addition, fentanyl showed anti-tumour 
effects in colorectal cancer cells in vitro. Its use is associated with reduced tumour cell migration and invasion via the inhibition of downregu-
lation of E-26 transformation-specific sequence-1 into activated serine/threonine-kinase protein kinase B-raf (BRAF) – lncRNA [51].

Opioid-induced cell proliferation is likely to be concentration- and time-dependent. When low concentrations or a single dose of opioids 
are used, tumour growth is stimulated. Conversely, high concentrations or chronic opioid exposure leads to tumour growth inhibition [52]. 
In addition, morphine proved to inhibit the expression and secretion of MMP-2 and MMP-9 in breast cancer cells in a time- and dose-
dependent manner. 

Another study showed that fentanyl inhibits tumour growth and cell invasion in colorectal cancer due to downregulation of miR-182 and 
MMP-9 expression by β-catenin. A recent study demonstrated that sufentanil does not affect the rate of apoptosis or the cell cycle distribu-
tion in colon and pancreatic cancer cells in vitro when clinical concentrations were used. MMP activity cannot be reverted by naloxone, which 
indicates that the inhibition of MMP secretion by morphine is not mediated by opioid receptors [53].

Furthermore, overexpression of μ-opioid receptor (MOR) promotes tumour growth and metastasis in several cancer cell types [54]. The acti-
vation of AKT and mTOR is associated with cell proliferation and migration which, in turn, are related to MOR overexpression [55].

Treatment with methyl-naltrexone (MNTX), an opioid antagonist, inhibits tumour cell invasion and implantation, while continuous infusion 
of MNTX decreases primary tumour growth and development of lung metastasis. Clinically, MNTX has been found to be associated with 
higher overall survival rates in patients with advanced cancer, which supports the hypothesis that MOR is involved in tumour progression 
[56]. Treatment with morphine, both prior to and after surgery, significantly reduced stress-induced corticosteroids in rats [57]. This finding 
suggests that the preoperative administration of morphine may play a key role in protection against surgery-induced metastasis [58].

NSAIDs and COX-2 inhibitors

The induction of COX-2, which is frequently observed in cancer, has a role in immune resistance. COX-2 inhibitors increase the cytotoxic-
ity of NK cells [59]. Moreover, when combined with β-adrenergic antagonists, they proved to decrease metastases in animal models [18]. 
A selective COX-2 inhibitor can suppress the release of prostaglandin E2 (PGE2) and promote immune responses against cancer cells [60].

The use of non-steroid anti-inflammatory drugs (NSAIDs) in preoperative medication increases cell immunity in cancer tissues [61]. PGE2 is 
a tumour-derived angiogenic factor independent of VEGF. PGE2 synthesis is controlled by COX-2 expression, and COX-2 inhibition blocks 
VEGF, leading to angiogenesis inhibition, tumour growth and metastasis formation [62].
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Recently, study indicated that morphine enhanced TNBC metastasis and angiogenesis while ketorolac suppressed this effect. Mechanisti-
cally, this may be related to the enhancement of TSP-1 synthesis after ketorolac administration which further de-activated PI3K/AKT/c-Myc 
pathway [63].

However, in a recent clinical trial reported that a single administration of 30 mg of ketorolac tromethamine before surgery does not increase 
disease-free survival in high-risk breast cancer patients. Overall survival difference between ketorolac tromethamine group and placebo 
group was not statistically significant [64]

Local anaesthetics

Local anaesthetics block voltage-dependent sodium channels and may inhibit tumour growth. Lidocaine, ropivacaine and bupivacaine inhibit 
cell proliferation and differentiation, are cytotoxic for mesenchymal stem cells in vitro, and play a key role in tumour growth and metastasis 
development in cancer cells [65].

Locally-administered lidocaine inhibits epidermal growth factor receptor, which is a target molecule of many cancer drugs. A study that 
assessed the direct effect of local anaesthetics showed that lidocaine and bupivacaine induce apoptosis in cancer cells both in vivo and in 
vitro, suggesting potential benefits for cancer surgery [66]. Lidocaine and tetracaine, which inhibit motor proteins of kinesin, reduce the for-
mation and activity of tubulin microtentacles. Therefore, these drugs may have a new ability to decrease metastatic spread in cancer [67]. In 
addition, lidocaine produces DNA demethylation in breast cancer cells in vitro [68]. Moreover, lidocaine, ropivacaine and bupivacaine reduce 
cell proliferation at concentrations of 100 μM, leading to cell cycle delay or arrest at G0/S-1 phases [69].

A recent study demonstrated that topic lidocaine increases the activity of NK cells against cancer in vitro by releasing lytic granules [70]. Fur-
thermore, results from basic science studies reveal a promising role of local anaesthetics regarding the reduction of tumour recurrence [71].

Anaesthetics and genetic implications

The possibility that many of the beneficial or harmful effects related to the drugs used in the anaesthetic procedure, have a genetic and 
molecular basis is increasingly accepted [72]. The oncological disease could be mediated by specific genes or molecular pathways.

The relationship between genes and protein coding is widely known (DNA -> mRNA -> protein). Variations in the signalling pathways and the 
cells genetic material made by cancer is one of the objectives of study and development of current treatment.

Nevertheless, less than 2% of the mammalian genome encodes proteins, which means that >90% represents non-coding RNA (ncRNA) [73]. 
ncRNAs are involved in the control of development, differentiation, metabolism, cell growth and tumour progression [74]. In general, ncRNAs 
are classified into two groups based on their length: small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs). sncRNAs include microRNA 
(miRNA), transfer RNA (tRNA) and some ribosomal RNA transcripts. Interplay patterns between lncRNAs and miRNAs appear to be crucial 
events in cancer progression. 

Emerging data support the involvement of lncRNA in tumour-stroma communication, a potentially important landmark in cancer progression. 
Recently, Sang et al [75] demonstrated that lncRNA participates in the activation of calcium-dependent kinase (CamK-A), which is highly 
activated in several cancers and involved in remodelling the tumour microenvironment through the activation of calcium (Ca2+), thereby 
promoting macrophage recruitment, angiogenesis and cancer progression.

Different miRNAs have been identified in biological fluids, such as urine and blood [76], serving as potential biomarkers in the diagnosis and 
prognosis of cancer. More recently, lncRNAs have been highlighted as potential biomarkers and cancer targets in precision medicine due to their 
specific expression patterns in tumour cells [77].  The role of LncRNAs in cancer disease has been known as different studies have shown its 
role as a diagnostic and prognostic element related to resistance to several drugs, through the modulation in the expression of drug transport-
ers, and have been identified in signalling pathways that contribute to oncogenic survival, cell cycle, and apoptosis. In this line, lncRNA-specific 
therapeutic approaches target lncRNA-mediated functions and pathways through gene silencing and structure disruption mechanisms[78].  
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The genetic modifications in LncRNAs, trying to modulate a group of genes and acting on their functions, are the basis of future therapeutic 
objectives that could be reached. 

In the regulation of gene expression by circular RNAs (circRNAs) through disease-related miRNAs, a complex network of miRNA-circRNA-
ncRNA interacting at a protein level is formed, affecting a wide range of human diseases, particularly cancer. Likewise, circRNAs also have 
oncogenic and proto-oncogenic roles. Fusion circRNAs (f-circRNAs) result from cancer-associated genomic translocations and have tumour-
promoting properties, including an increase in cell viability, a higher resistance to cancer therapy, and in vivo cell transformation into leu-
kaemia cells [79]. circRNA expression has been demonstrated in different types of human cells [80], playing important physiological roles 
by regulating cell proliferation and haematopoiesis [81]. In addition, circRNAs have been implicated in the mediation of immune responses. 
For instance, circRasGEF1B upregulates the expression of TLR4/LPS-induced ICAM-1 mature mRNA stability, thus controlling the innate 
immune responses. Moreover, cellular mechanism allows to recognise foreign circRNAs through intron identity, which enables the identifica-
tion of self and foreign circRNAs within the cytoplasm of the host [82].

Retrospective analyses suggest that an anaesthetic-analgesic technique during cancer surgery may affect recurrence/metastasis. This could 
involve direct effects on cancer cells. An interesting research objective is the modification of gene expression as a target of anaesthetic-
analgesic drugs.

On the other hand, propofol has a potential antitumour effect, mainly due to the regulation of miRNA expression and transference. Accord-
ingly, Wang et al [83] found that propofol suppresses cell proliferation and invasion in pancreatic cancer cells through the upregulation of 
miRNA-133a expression. 

Furthermore, Xu et al [84] found that propofol induces the upregulation of miRNA let-7i expression and cell apoptosis in epithelial ovarian 
cancer cells in vitro.

Propofol increases miRNA-218 and miRNA-451 expression, whereas it reduces MMP-2 protein expression and cancer cell proliferation in 
vitro [85]. Likewise, Zhang et al [86] found that propofol reduces the invasiveness of hepatocellular carcinoma cells, partly due to the down-
regulation of MMP-9 by miRNA-199a.

In addition, the low expression of miRNA contributes to the antitumour effect of propofol. Accordingly, miRNA-21 is overexpressed in the 
early stages of pancreatic cancer [87]. Propofol inhibits miRNA-21 and suppresses the invasion of pancreatic cancer cells. In fact, it is thought 
that propofol inhibits the expression of miRNA-21 and reduces the expression of Slug, resulting in an increase in Slug-dependent PUMA (p53 
proapoptotic target gene) and in the expression of E-cadherin [88]. The activation of PUMA and E-cadherin is involved in the inhibition of cell 
apoptosis. Therefore, propofol induces apoptosis and inhibits the invasion of pancreatic cancer cells through miR-21/Slug/E-cadherin and 
miR-21/Slug/PUMA signalling pathways [87].

Anaesthetic drugs may affect oncogene overexpression in certain types of cancer. Propofol can inhibits the expression of the androgen 
receptor in vitro, thus indicating a potential positive effect, as androgenic stimulation is involved in prostate cancer progression [16]. Fur-
thermore, propofol has been shown to reduce of HIF-1a levels in cancer cells in vitro, with potential inhibitory effects on angiogenesis and, 
therefore, on tumour growth [89]. Volatile anaesthetics are known to be protective against ischaemia-reperfusion injury in a variety of clinical 
contexts and organ systems. This protection is associated with an induced expression of the angiogenesis-regulating factor HIF-1a, a mecha-
nism that may be protective in the setting of reperfusion injury, but which promotes malignant recurrence in cancer surgery. Isoflurane has 
been found to increase the expression of HIF in prostate and renal cell carcinoma cells in different studies, and this has been associated with 
increased cancer cell migration and proliferation.

Opioids are related to modulation in cancer progression. Morphine, even when it was given in a low dose, can change the expression of gene 
groups, and induce metastasis (in vitro) [90]. The NET1 gene, belongs to this genetic group, overexpressed in breast and gastric adenocarci-
noma cells through the Serial Analysis of Gene Expression database. The NET1 gene has a key role in the organisation of the actin cytoskel-
eton and, thus, in the ability of cancer cells to migrate and invade tissues, and even more, can help identify breast cancer patients at high risk 
of metastasis [91].
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There is evidence supporting that a single dose of morphine can alter the expression of two major gene groups: regulators of proteins 
involved in mitochondrial pathways, and cytoskeleton-related proteins [92,93]. However, it has not been determined whether it modifies 
any cell function.

TNF-α increases the expression of intracellular adhesion molecule-1 (ICAM-1), a receptor required for leukocyte adhesion and tumour inva-
sion. TNF-α also activates Src protein tyrosine kinase, which is a regulator of endothelial permeability. Src is involved in extravasation of 
cancerous cells, which is necessary for solid tumour metastasis [94]. Src is also involved with regulation of the cytoskeletal changes required 
for cell migration by phosphorylation of the proteins involved in focal adhesions and actin binding [95]. Lidocaine and ropivacaine have 
been reported to decrease cancer cell migration by inhibiting Src activation induced by tumour necrosis factor-α and phosphorylation of 
intercellular adhesion molecule-1 [96]. A later study showed that these local anaesthetics may have an anti-inflammatory effect, since in 
endothelial cells they effectively block inflammatory signaling of TNFα by attenuating the recruitment of p85 in the TNF-1 receptor. The 
resulting decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperper-
meability [97].

Conclusion

There is growing evidence that the anaesthetic technique and anaesthetics may play a relevant role in tumour dissemination and relapse in 
the long term. The perioperative use of anaesthetic/analgesic techniques with protective effects on antimetastatic immune response may 
reduce tumour progression. To understand the mechanisms is important in order to study the genetic implications regarding anaesthetics 
drugs. New studies are necessary, the effects of anaesthetic drugs on the genetics of cancer need to be defined. The results of these studies 
may provide an answer if the data in animal models and in vitro studies can be applied in clinical practice and these studies may provide a 
new therapeutic target in cancer cells.
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