My ePortfolio Register   

Scientists show how cancerous cells evade a potent targeted therapy

Imagine developing a drug designed to inhibit a protein that helps cancer cells proliferate and survive only to find that the drug does not perform very well in the clinic.

This was the dilemma faced by scientists researching inhibitors of signal transducer and activator of transcription (STAT3), a protein that controls transcription by the STAT3 gene.

When STAT3 was knocked out in a mouse model, researchers observed increased T-cell immune responses, suggesting a valuable therapeutic target.

However, targeting STAT3 in tumours has had only limited success to date.

Now, researchers at The Wistar Institute have discovered how STAT3 behaves in immature myeloid cells known as myeloid-derived suppressor cells (MDSCs), and they believe they have found the basis for a much more effective method of using STAT3 inhibitors to stop cancer progression in its tracks.

The findings were published in the journal Immunity.

In healthy individuals, MDSCs regulate immune responses and tissue repair, and the population of these cells rapidly expands during inflammation, infection and cancer.

However, when these myeloid cells migrate to tumour sites, they can differentiate to tumour associated macrophages (TAMs), which can in turn stimulate the formation of blood vessels in tumours and promote enhanced tumour cell invasion and motility.

Previous studies showed that STAT3 plays a major role in the expansion of MDSCs, so the researchers decided to study if there was a link between STAT3 and MDSC differentiation.

"Studies pointed to STAT3 being an important target in the development of cancer," said Dmitry I. Gabrilovich, M.D., Ph.D., the Christopher M. Davis Professor and Professor and Program Leader in the Translational Tumour Immunology Program at The Wistar Institute and lead author of the study.

"Clinically speaking, we do not observe the robust results that we would expect. The purpose of this study was to discover why this is happening and figure out a way to make these therapies as effective as our research would suggest."

Gabrilovich and colleagues analysed blood samples from patients with cancer to determine the level of activity.

Even though STAT3 activity drives the expansion of MDSCs and is involved in immune responses mediated by the cells, they found that high levels of STAT3 activity actually prevent the differentiation of MDSCs to macrophages.

Low levels of STAT3 inside tumours are what cause this activity, but the levels are low enough that STAT3 inhibitors cannot effectively target STAT3.

What causes the lower levels of STAT3 activity in tumour MDSC that help drive their differentiation to TAMs?

The answer lies in the tumour microenvironment.

Hypoxia, or a lack of oxygen, is a phenomenon in tumours that occurs when they outgrow their blood supply.

When hypoxia occurs, the activity of CD45 - a protein found in myeloid and lymphoid cells - increases.

This increase in CD45 activity is what lowers the levels of STAT3, allowing for the differentiation of MDSCs to TAMs.

Finally, the researchers wanted to see whether targeting CD45 would help STAT3 inhibitors become more effective.

In a sarcoma that was shown to be resistant to STAT3 inhibitors, the team used a combination of an experimental STAT3 inhibitor called JSI-124 (cucurbitacin I) and sialidase, an enzyme that disrupts CD45 activity.

When either JSI-124 or sialidase were used alone, they either did not have any effect tumour growth or enhanced tumour progression, respectively.

When the pair was used together, the result was substantial antitumour activity.

"Our results suggest that sialidase could sensitise myeloid cells in tumours to previously ineffective STAT3 inhibitors," said Vinit Kumar, Ph.D., staff scientist in the Gabrilovich laboratory at The Wistar Institute and first author of the study.

"We confirmed that STAT3 is indeed a great potential target for cancer immunotherapies as long as we account for the other factors affecting the tumour microenvironment."

Source: The Wistar Institute



Please click on the 'New Comment' link to the left to add a new comment, or alternatively click any 'Add Comment' link next to any existing post to respond. The views expressed here are not those of ecancer. For more information please view our Privacy Policy.

Founding partners

European Cancer Organisation European Institute of Oncology

Founding Charities

Foundazione Umberto Veronesi Fondazione IEO Swiss Bridge

Published by

Cancer Intelligence